

Image Processing II

Chapter 10 Computational Imaging

Prof. Michael Unser
EPFL Center for Imaging

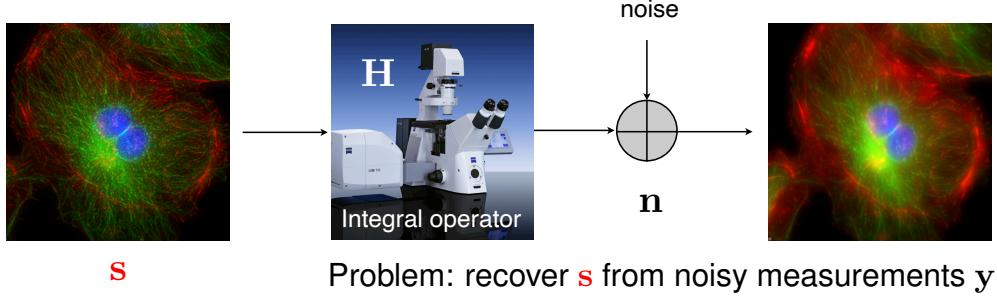
May 2025

OUTLINE

- **1. Imaging as an inverse problem**
 - Basic imaging operators
 - Discretization of the inverse problem
 - Appendix A: Magnetic Resonance Imaging
- **2. Classical reconstruction algorithms**
 - Vector calculus
 - Basic reconstruction: Least-squares solution
 - Tikhonov regularization
 - Iterative reconstruction
 - Wiener / LMSE solution
- **3. 2nd generation methods: the sparsity (re)volution**
 - Sparsity and compressed sensing
 - Elements of convex analysis
 - Proximity operators
 - Image reconstruction under sparsity constraints
- **4. The learning revolution**
 - Image reconstruction using deep neural networks
 - iterative (PnP) schemes

Computational imaging = Image reconstruction

- Linear forward model



\mathbf{s}

Problem: recover \mathbf{s} from noisy measurements y

- The easy scenario

Hypotheses: \mathbf{H} is well

$$\Rightarrow \mathbf{s} \approx (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$$

- Backprojection (

Basic limitations

- 1) Inherent noise amplification
- 2) Difficulty to invert \mathbf{H} (too large or non-square)
- 3) All interesting inverse problems are **ill-posed**

10-3

Part 1:
Setting up
the problem

10-4

1.1 BASIC IMAGING OPERATORS

- Fourier transform
- Windowing
- Convolution
- Radon transform
- Panorama of imaging modalities

Forward imaging model (noise-free)

Unknown molecular/anatomical map: $s(\mathbf{r}), \mathbf{r} = (x, y, z, t) \in \mathbb{R}^d$

defined over a continuum in space-time

$s \in L_2(\mathbb{R}^d)$ (space of finite-energy functions)

Imaging operator $\mathbf{H} : s \mapsto \mathbf{y} = (y_1, \dots, y_M) = \mathbf{H}\{s\}$

from continuum to discrete (finite dimensional)

$\mathbf{H} : L_2(\mathbb{R}^d) \rightarrow \mathbb{R}^M$

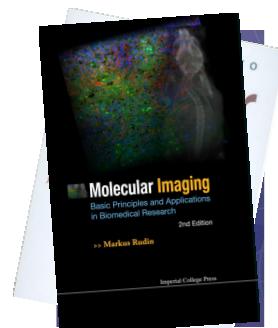
Linearity assumption: for all $s_1, s_2 \in L_2(\mathbb{R}^d), \alpha_1, \alpha_2 \in \mathbb{R}$

$$\mathbf{H}\{\alpha_1 s_1 + \alpha_2 s_2\} = \alpha_1 \mathbf{H}\{s_1\} + \alpha_2 \mathbf{H}\{s_2\}$$

$$\Rightarrow [\mathbf{y}]_m = y_m = \langle \eta_m, s \rangle = \int_{\mathbb{R}^d} \eta_m(\mathbf{r}) s(\mathbf{r}) d\mathbf{r}$$

impulse response of m th detector

(by the Riesz representation theorem)



Basic operator: Fourier transform

$$\mathcal{F} : L_2(\mathbb{R}^d) \rightarrow L_2(\mathbb{R}^d)$$

$$\hat{f}(\boldsymbol{\omega}) = \mathcal{F}\{f\}(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} f(\boldsymbol{x}) e^{-j\langle \boldsymbol{\omega}, \boldsymbol{x} \rangle} d\boldsymbol{x}$$

Reconstruction formula (inverse Fourier transform)

$$f(\boldsymbol{x}) = \mathcal{F}^{-1}\{f\}(\boldsymbol{x}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(\boldsymbol{\omega}) e^{j\langle \boldsymbol{\omega}, \boldsymbol{x} \rangle} d\boldsymbol{\omega} \quad (\text{a.e.})$$

Foolproof usage:

$$\mathcal{F} : L_1(\mathbb{R}^d) \rightarrow C_0(\mathbb{R}^d) \triangleq \{ f : \mathbb{R}^d \rightarrow \mathbb{R} \text{ continuous with } \|f\|_{L_\infty} < \infty \text{ and } f(\boldsymbol{x}) \rightarrow 0 \text{ as } \|\boldsymbol{x}\| \rightarrow +\infty \}$$

Equivalent analysis functions: $\eta_m(\boldsymbol{x}) = e^{j\langle \boldsymbol{\omega}_m, \boldsymbol{x} \rangle}$ (complex sinusoids)

10-7

Basic operator: Windowing

$$W : L_2(\mathbb{R}^d) \rightarrow L_2(\mathbb{R}^d)$$

$$W\{f\}(\boldsymbol{x}) = w(\boldsymbol{x})f(\boldsymbol{x})$$

Positive window function (continuous and bounded): $w \in C_b(\mathbb{R}^d), w(\boldsymbol{x}) \geq 0$

■ Special case: modulation

$$\begin{aligned} w(\boldsymbol{r}) &= e^{j\langle \boldsymbol{\omega}_0, \boldsymbol{r} \rangle} \\ e^{j\langle \boldsymbol{\omega}_0, \boldsymbol{r} \rangle} f(\boldsymbol{r}) &\xleftrightarrow{\mathcal{F}} \hat{f}(\boldsymbol{\omega} - \boldsymbol{\omega}_0) \end{aligned}$$

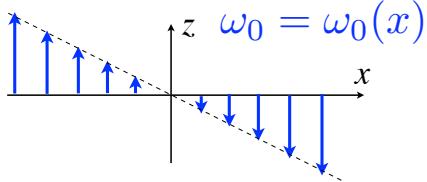
Application: Structured illumination microscopy (SIM)

10-8

Magnetic resonance imaging

- Magnetic resonance: $\omega_0 = \gamma B_0$

Frequency encode:



- Linear forward model for MRI

$$\mathbf{r} = (x, y, z)$$

$$\hat{s}(\omega_m) = \int_{\mathbb{R}^3} s(\mathbf{r}) e^{-j\langle \omega_m, \mathbf{r} \rangle} d\mathbf{r} \quad (\text{sampling of Fourier transform})$$

- Extended forward model with coil sensitivity

$$\hat{s}_w(\omega_m) = \int_{\mathbb{R}^3} w(\mathbf{r}) s(\mathbf{r}) e^{-j\langle \omega_m, \mathbf{r} \rangle} d\mathbf{r}$$

10-9

Basic operator: Convolution

$$\mathbf{H} : L_2(\mathbb{R}^d) \rightarrow L_2(\mathbb{R}^d)$$

$$\mathbf{H}\{f\}(\mathbf{x}) = (h * f)(\mathbf{x}) = \int_{\mathbb{R}^d} h(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

$$\text{Impulse response: } h(\mathbf{x}) = \mathbf{H}\{\delta\}$$

$$\text{Equivalent analysis functions: } \eta_m(\mathbf{x}) = h(\mathbf{x}_m - \cdot)$$

$$\text{Frequency response: } \hat{h}(\omega) = \mathcal{F}\{h\}(\omega) \quad \text{with } \hat{h} \in L_\infty(\mathbb{R}^d)$$

- Convolution as a frequency-domain product

$$(h * f)(\mathbf{x}) \quad \xleftrightarrow{\mathcal{F}} \quad \hat{h}(\omega) \hat{f}(\omega)$$

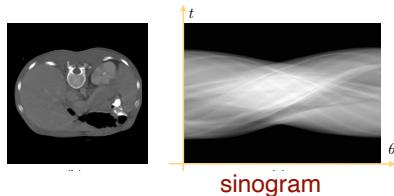
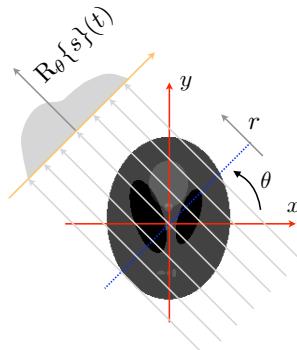
10-10

Basic operator: X-ray transform

Projection geometry: $\mathbf{x} = t\theta + r\theta^\perp$ with $\theta = (\cos \theta, \sin \theta)$

■ Radon transform (line integrals)

$$\begin{aligned} R_\theta\{s(\mathbf{x})\}(t) &= \int_{\mathbb{R}} s(t\theta + r\theta^\perp) dr \\ &= \int_{\mathbb{R}^2} s(\mathbf{x}) \delta(t - \langle \mathbf{x}, \theta \rangle) d\mathbf{x} \end{aligned}$$



Equivalent analysis functions: $\eta_m(\mathbf{x}) = \delta(t_m - \langle \mathbf{x}, \theta_m \rangle)$

10-11

Modality	Radiation	Forward model	Variations
2D or 3D tomography	coherent x-ray	$y_i = R_{\theta_i} x$	parallel, cone beam, spiral sampling
3D deconvolution microscopy	fluorescence	$y = Hx$	brightfield, confocal, light sheet
structured illumination microscopy (SIM)	fluorescence	$y_i = HW_i x$ H: PSF of microscope W _i : illumination pattern	full 3D reconstruction, non-sinusoidal patterns
Positron Emission Tomography (PET)	gamma rays	$y_i = H_{\theta_i} x$	list mode with time-of-flight
Magnetic resonance imaging (MRI)	radio frequency	$y = Fx$	uniform or non-uniform sampling in k space
Cardiac MRI (parallel, non-uniform)	radio frequency	$y_{t,i} = F_t W_i x$ W _i : coil sensitivity	gated or not, retrospective registration
Optical diffraction tomography	coherent light	$y_i = W_i F_i x$	with holography or grating interferometry

10-12

1.2 DISCRETIZATION

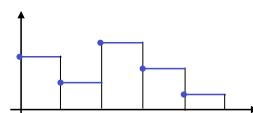
- Discretization: Finite dimensional formalism
- Exemples
 - Diffraction-limited convolution (Fluorescence microscopy)
 - MRI
- Appendix A: Magnetic Resonance Imaging

Discretization: Finite dimensional formalism

Selection of appropriate basis functions: $\beta_{\mathbf{k}} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $\mathbf{k} \in \Omega \subset \mathbb{Z}^d$ and $\text{Card}(\Omega) = K$

$$s(\mathbf{r}) = \sum_{\mathbf{k} \in \Omega} s[\mathbf{k}] \beta_{\mathbf{k}}(\mathbf{r})$$

Signal vector: $\mathbf{s} = (s[\mathbf{k}])_{\mathbf{k} \in \Omega}$ of dimension K



- Measurement model (image formation)

$$y_m = \int_{\mathbb{R}^d} \eta_m(\mathbf{r}) s(\mathbf{r}) d\mathbf{r} + n[m] = \langle \eta_m, s \rangle + n[m], \quad (m = 1, \dots, M)$$

η_m : sampling/imaging function (m th detector)

$n[\cdot]$: additive noise

$$\mathbf{y} = \mathbf{Hs} + \mathbf{n}$$

System matrix : $\mathbf{H} \in \mathbb{R}^{M \times K}$ with $[\mathbf{H}]_{m,\mathbf{k}} = \langle \eta_m, \beta_{\mathbf{k}} \rangle = \int_{\mathbb{R}^d} \eta_m(\mathbf{r}) \beta_{\mathbf{k}}(\mathbf{r}) d\mathbf{r}$

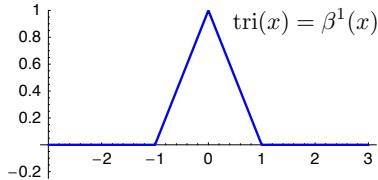
Example of basis functions

Shift-invariant representation: $\beta_{\mathbf{k}}(\mathbf{x}) = \beta(\mathbf{x} - \mathbf{k})$

Separable generator: $\beta(\mathbf{x}) = \prod_{n=1}^d \beta(x_n)$

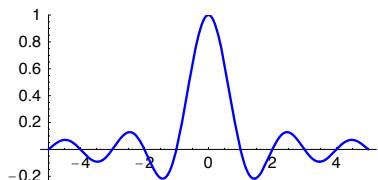
■ Pixelated model

$$\beta(x) = \text{rect}(x)$$



■ Bilinear model

$$\beta(x) = (\text{rect} * \text{rect})(x) = \text{tri}(x)$$



■ Bandlimited representation

$$\beta(x) = \text{sinc}(x)$$

10-15

Example 1: Diffraction-limited convolution

Hypothesis: $\mathcal{F}\{h_{2D}\}(\omega) = \hat{h}_{2D}(\omega) = 0$ for $\|\omega\| \geq \omega_0$ (Diffraction-limited optical transfer function)

■ Discretization

$\omega_0 \leq \pi$ and representation in (separable) sinc basis $\{\text{sinc}(x - \mathbf{k})\}_{\mathbf{k} \in \mathbb{Z}^2}$

Analysis functions: $\eta_{\mathbf{m}}(x, y) = h_{2D}(x - m_1, y - m_2)$

$$\begin{aligned} [\mathbf{H}]_{\mathbf{m}, \mathbf{k}} &= \langle \eta_{\mathbf{m}}, \text{sinc}(\cdot - \mathbf{k}) \rangle \\ &= \langle h_{2D}(\cdot - \mathbf{m}), \text{sinc}(\cdot - \mathbf{k}) \rangle \\ &= (\text{sinc} * h_{2D})(\mathbf{m} - \mathbf{k}) = h_{2D}(\mathbf{m} - \mathbf{k}). \end{aligned}$$

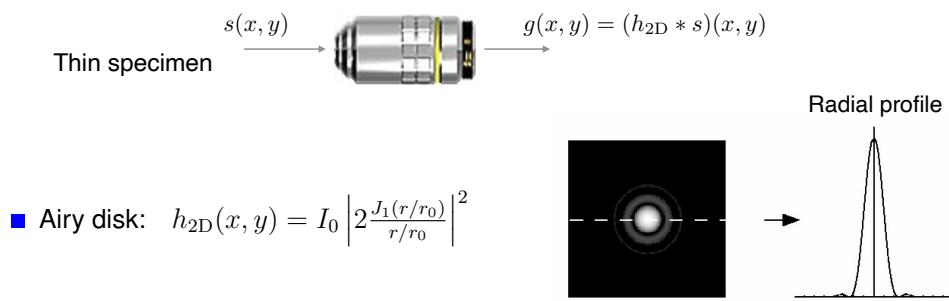
\mathbf{H} : convolution matrix diagonalized by discrete Fourier transform

■ Matrix-free implementation using the FFT

The discretized forward model $\mathbf{s} \mapsto \mathbf{Hs}$ is implemented efficiently using the FFT

10-16

Diffraction-limited 2D model of a fluorescence microscope



- Airy disk: $h_{2D}(x, y) = I_0 \left| 2 \frac{J_1(r/r_0)}{r/r_0} \right|^2$

with $r = \sqrt{x^2 + y^2}$, $r_0 = \frac{\lambda f_0}{2\pi R_0}$, $J_1(r)$: first-order Bessel function.

- Modulation transfer function

$$\hat{h}_{2D}(\omega) = \begin{cases} \frac{2}{\pi} \left(\arccos\left(\frac{\|\omega\|}{\omega_0}\right) - \frac{\|\omega\|}{\omega_0} \sqrt{1 - \left(\frac{\|\omega\|}{\omega_0}\right)^2} \right), & \text{for } 0 \leq \|\omega\| < \omega_0 \\ 0, & \text{otherwise} \end{cases}$$

Cut-off frequency (Rayleigh): $\omega_0 = \frac{2R_0}{\lambda f_0} = \frac{\pi}{r_0} \approx \frac{2NA}{\lambda}$

10-17

Example 2: Magnetic resonance imaging (MRI)

- Physical image formation model (noise-free)

$$\hat{s}(\omega_m) = \int_{\mathbb{R}^2} s(\mathbf{x}) e^{-j\langle \omega_m, \mathbf{x} \rangle} d\mathbf{x} \quad (\text{sampling of Fourier transform})$$

Equivalent analysis function: $\eta_m(\mathbf{x}) = e^{-j\langle \omega_m, \mathbf{x} \rangle}$

- Discretization in separable sinc basis

$$\begin{aligned} [\mathbf{H}]_{m, \mathbf{k}} &= \langle \eta_m, \text{sinc}(\cdot - \mathbf{k}) \rangle \\ &= \langle e^{-j\langle \omega_m, \cdot \rangle}, \text{sinc}(\cdot - \mathbf{k}) \rangle = e^{-j\langle \omega_m, \mathbf{k} \rangle} \end{aligned}$$

Property: $\mathbf{H}^T \mathbf{H}$ is circulant (FFT-based implementation)

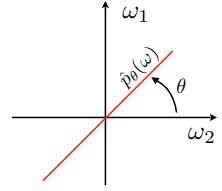
10-18

Example 3: Discretization of the Radon transform

Shift-invariant basis: $s(\mathbf{x}) = \sum_{\mathbf{n} \in \Omega} s[\mathbf{n}] \varphi(\mathbf{x} - \mathbf{n})$ with $\Omega \subset \mathbb{Z}^2$

$$\hat{p}_\theta(\omega) = \widehat{R_\theta\{\varphi\}}(\omega) = \hat{\varphi}(\omega \cos \theta, \omega \sin \theta)$$

■ Fourier-slice theorem: $\int_{\mathbb{R}} R_\theta\{\varphi\}(t) e^{-j\omega t} dt = \hat{\varphi}(\omega)|_{\omega=\omega\theta}$



Proposition: Consider the separable function $\varphi(\mathbf{x}) = \varphi_1(x)\varphi_2(y)$. Then,

$$R_\theta\{\varphi(\cdot - \mathbf{x}_0)\}(t) = \varphi_\theta(t - t_0)$$

where $t_0 = \langle \mathbf{x}_0, \theta \rangle$ and

$$\varphi_\theta(t) = \left(\frac{1}{|\cos \theta|} \varphi_1\left(\frac{\cdot}{\cos \theta}\right) * \frac{1}{|\sin \theta|} \varphi_2\left(\frac{\cdot}{\sin \theta}\right) \right)(t).$$

$$[\mathbf{H}]_{(i,j),\mathbf{n}} = R_{\theta_i}\{\varphi(\cdot - \mathbf{n})\}t - j = \varphi_{\theta_i}(t_j - \langle \mathbf{n}, \theta_i \rangle)$$

10-19

Spline flowers



10-20

Appendix A: Magnetic Resonance Imaging (MRI)

Richard R. Ernst (ETHZ)

Paul C. Lauterbur

Peter Mansfield

Nobel Prize in Chemistry 1991

Nobel Prize in Medicine 2003

Exploits Larmor precession of nuclear spins:

$$\omega = \gamma \times B$$

spectroscopy

spin resonance

imaging

10-21

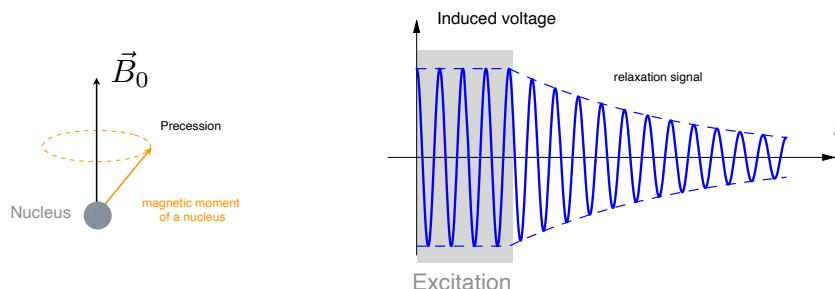
Physical principle of magnetic resonance

■ Spins as signature of the atomic structure

- The nuclei of individual atoms are characterized by a spin and a magnetic moment: they are equivalent to small magnets.
- When exposed to a large external magnetic field \vec{B}_0 , the nuclear spins tend to resonate and precess at the **Larmor frequency**

$$\omega_0 = \gamma B_0$$

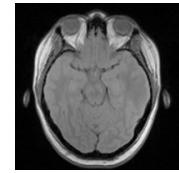
γ : gyromagnetic constant associated with a given nuclear type (e.g. ^1H ou ^{13}C)



Example: $B_0 = 1.5$ Tesla corresponds to $f_0 = \frac{\omega_0}{2\pi} \approx 64$ MHz for Hydrogen nuclei

10-22

Magnetic Resonance Imaging (MRI)



Proton density

“whole body” scanner (1.5 Tesla magnet)

■ Controlled RF excitation

- Signal induced by the spins of hydrogen nuclei ($^1\text{H}=\text{proton}$) exclusively
- The relaxation decay during acquisition is negligible
→ Elementary MNR responses are quasi-sinusoidal
- One only considers a spin density $p(x)$ along the x axis (1D imaging)

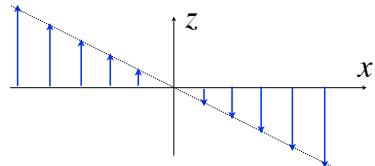
10-23

Frequency encoding

$$\omega_0 = \omega_0(x)$$

- Excitation via a bandlimited RF pulse: $\omega_0(x) \in (\omega_{\min}, \omega_{\max})$
- A gradient along x is applied during the measurement:

$$B_z = B_z(x) = B_0 - \frac{G_x}{\gamma}x$$
- Measurements: the FID signal that is received back from the sample in the RF coil
- The signal is demodulated with its central frequency being mapped to 0.



■ Principe of frequency encoding

- Signal due to a point source of density p_0 at position x_0 :

$$s(t) = p_0 e^{-j(G_x x_0)t}$$
 (pure sinusoid)
- The position x_0 is encoded in the frequency $\omega(x_0) = -G_x x_0$.

- Signal due to a continuum of sources with density distribution $p(x)$

$$s(t) = \int_{-\infty}^{\infty} p(x) e^{-jx(\textcolor{blue}{G_x} t)} dx$$

- The spin density along x is recovered by inverse Fourier transform:

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} s(t) \Big|_{t=\omega/G_x} e^{j\omega x} d\omega$$

10-24

Beyond one dimensional MRI

■ Three-dimensional localization

■ Localization in z .

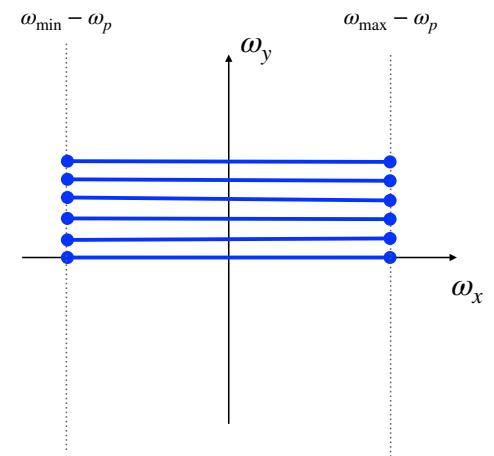
A static magnetic field that is linear along z (gradient) is applied **during** the excitation. In this way, the RF pulse only excites a slice perpendicular to z : $\omega(z_0) \in (\omega_{\min}, \omega_{\max})$.

■ Localization in y by phase encoding.

A linear gradient in y is applied during a suitable time **after** the excitation but **before** the acquisition. The process is iterated such as to sample the 2D Fourier transform along the ω_y axis.

■ Localization in x by frequency encoding.

Measurement of the 2D Fourier transform of a slice along ω_x with $\omega_y = \text{Const.}$



10-25

Part 2:

Classical image reconstruction

Discretized forward model: $\mathbf{y} = \mathbf{Hs} + \mathbf{n}$

Inverse problem: How to efficiently recover \mathbf{s} from \mathbf{y} ?

10-26

Vector calculus

- Scalar cost function $J(\mathbf{v}) : \mathbb{R}^N \rightarrow \mathbb{R}$

- Vector differentiation: $\frac{\partial J(\mathbf{v})}{\partial \mathbf{v}} = \begin{bmatrix} \frac{\partial J}{\partial v_1} \\ \vdots \\ \frac{\partial J}{\partial v_N} \end{bmatrix} = \nabla J(\mathbf{v}) \quad (\text{gradient})$

- Necessary condition for an unconstrained optimum (minimum or maximum)

$$\frac{\partial J(\mathbf{v})}{\partial \mathbf{v}} = 0 \quad (\text{also sufficient if } J(\mathbf{v}) \text{ is convex in } \mathbf{v})$$

- Useful identities

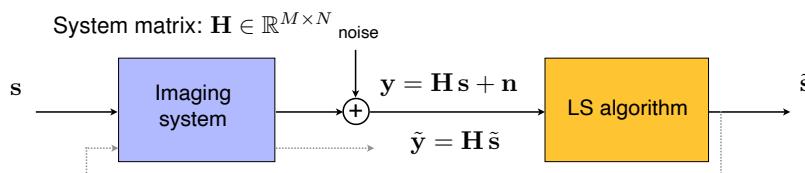
$$\frac{\partial}{\partial \mathbf{v}} (\mathbf{a}^T \mathbf{v}) = \frac{\partial}{\partial \mathbf{v}} (\mathbf{v}^T \mathbf{a}) = \mathbf{a}$$

$$\frac{\partial}{\partial \mathbf{v}} (\mathbf{v}^T \mathbf{A} \mathbf{v}) = (\mathbf{A} + \mathbf{A}^T) \cdot \mathbf{v}$$

$$\frac{\partial}{\partial \mathbf{v}} (\mathbf{v}^T \mathbf{A} \mathbf{v}) = 2\mathbf{A} \cdot \mathbf{v} \quad \text{if } \mathbf{A} \text{ is symmetric}$$

10-27

Basic reconstruction: least-squares solution



- Least-squares fitting criterion: $J_{\text{LS}}(\tilde{\mathbf{s}}, \mathbf{y}) = \|\mathbf{y} - \mathbf{H}\tilde{\mathbf{s}}\|^2$

$$\min_{\tilde{\mathbf{s}}} \|\mathbf{y} - \tilde{\mathbf{y}}\|^2 = \min_{\tilde{\mathbf{s}}} J_{\text{LS}}(\mathbf{s}, \mathbf{y}) \quad (\text{maximum consistency with the data})$$

- Formal least-squares solution

$$J_{\text{LS}}(\mathbf{s}, \mathbf{y}) = \|\mathbf{y} - \mathbf{H}\mathbf{s}\|^2 = \|\mathbf{y}\|^2 + \mathbf{s}^T \underbrace{\mathbf{H}^T \mathbf{H}}_{\mathbf{A}} \mathbf{s} - 2 \underbrace{\mathbf{y}^T \mathbf{H}}_{\mathbf{a}^T} \mathbf{s}$$

$$\frac{\partial J_{\text{LS}}(\mathbf{s}, \mathbf{y})}{\partial \mathbf{s}} = 2\mathbf{H}^T \mathbf{H} \mathbf{s} - 2\mathbf{H}^T \mathbf{y} = 0 \quad \Rightarrow \quad \mathbf{s}_{\text{LS}} = \arg \min_{\mathbf{s}} J_{\text{LS}}(\mathbf{s}, \mathbf{y}) = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$$

- Backprojection (poor man's solution): $\mathbf{s} \approx \mathbf{H}^T \mathbf{y}$

OK if \mathbf{H} is unitary $\Leftrightarrow \mathbf{H}^{-1} = \mathbf{H}^T$

10-28

Data fit and maximum-likelihood estimation

■ Using the knowledge of the noise distribution

Hypothesis: independent, zero-mean measurement noise with known PDF $p(\mathbf{n})$

Measurement equation $\Leftrightarrow \mathbf{y} - \mathbf{Hs} = \mathbf{n}$

Expected measurement: $\mathbb{E}\{\mathbf{y}\} = \mathbf{Hs}$ (detector-wise)

Conditional probability density: $p(\mathbf{y}|\mathbf{s}) = \prod_{m=1}^M p(n_m)$

■ Maximum-likelihood estimation (ML)

$$J_{\text{ML}}(\mathbf{s}, \mathbf{y}) = \log(p(\mathbf{y}|\mathbf{s})) = \sum_{m=1}^M \log(p(n_m)) = -J_{\text{data}}(\mathbf{s}, \mathbf{y})$$

Maximization of the ML criterion yields the most "likely" solution

■ Special case: Gaussian white noise

$$\begin{aligned} p(\mathbf{y}|\mathbf{s}) &= p(\mathbf{n}) = \prod_{m=1}^M \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_m - [\mathbf{Hs}]_m)^2}{2\sigma^2}\right) \\ \Rightarrow J_{\text{ML}}(\mathbf{s}, \mathbf{y}) &= -\sum_{m=1}^M \left(\frac{(y_m - [\mathbf{Hs}]_m)^2}{2\sigma^2} - \frac{1}{2} \log(2\pi\sigma^2) \right) \propto -J_{\text{LS}}(\mathbf{s}, \mathbf{y}) + \text{Const} \end{aligned}$$

10-29

Making use of regularization

From a global perspective, ML deconvolution is ill-posed. It is better to constrain the solution by imposing explicit regularization constraints:

$$J(\mathbf{s}, \mathbf{y}) = J_{\text{data}}(\mathbf{s}, \mathbf{y}) + \lambda \cdot J_{\text{reg}}(\mathbf{s})$$

$\lambda \geq 0$: regularization factor (adjustable)

■ Many possible choices of regularization

- Quadratic or Tikhonov: $J_{\text{reg}}(\mathbf{s}) = \|\mathbf{Ls}\|^2$
where \mathbf{L} is a suitable differential operator (e.g., Laplacian) that penalizes oscillations
- Maximum a posteriori or MAP (using Bayes rule):
 $J_{\text{MAP}}(\mathbf{s}) \propto -\log(p(\mathbf{s}))$ (prior probability density)
- Total variation: $J_{\text{TV}}(\mathbf{s}) = \|\nabla \mathbf{s}\|_1$ (favors piecewise-constant solutions)
- General non-linear: $J_{\text{reg}}(\mathbf{s}) = \sum_{n=1}^N \Phi([\mathbf{Ls}]_n)$ where $\Phi(\cdot)$ is a symmetric increasing function
- Wavelet regularization: $J_{\text{reg}}(\mathbf{s}) = \|\mathbf{W}^T \mathbf{s}\|_{\ell_1}$
where \mathbf{W} is a suitable wavelet transform (favors "sparse" solutions)

see Part III

10-30

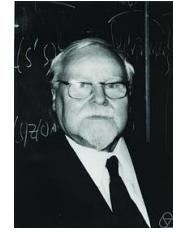
Linear inverse problems (20th century theory)

- Dealing with **ill-posed problems**: Tikhonov **regularization**

$\mathcal{R}(\mathbf{s}) = \|\mathbf{Ls}\|_2^2$: regularization (or smoothness) functional

\mathbf{L} : regularization operator (i.e., Gradient)

$$\min_{\mathbf{s}} \mathcal{R}(\mathbf{s}) \quad \text{subject to} \quad \|\mathbf{y} - \mathbf{Hs}\|_2^2 \leq \sigma^2$$



Andrey N. Tikhonov (1906-1993)

- Equivalent variational problem

$$\mathbf{s}^* = \arg \min \underbrace{\|\mathbf{y} - \mathbf{Hs}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{Ls}\|_2^2}_{\text{regularization}}$$

Formal linear solution: $\mathbf{s} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{L}^T \mathbf{L})^{-1} \mathbf{H}^T \mathbf{y} = \mathbf{R}_\lambda \cdot \mathbf{y}$

Interpretation: “**filtered**” backprojection

10-31

Iterative reconstruction algorithm

- Generic minimization problem: $\mathbf{s}_{\text{opt}} = \arg \min_{\mathbf{s}} J(\mathbf{s}, \mathbf{y})$

- Steepest-descent solution

$$\mathbf{s}^{(k+1)} = \mathbf{s}^{(k)} - \gamma \nabla J(\mathbf{s}^{(k)}, \mathbf{y})$$

- Iterative constrained least-squares reconstruction

$$J_{\text{Tik}}(\mathbf{s}, \mathbf{y}) = \frac{1}{2} \|\mathbf{y} - \mathbf{Hs}\|^2 + \frac{\lambda}{2} \|\mathbf{Ls}\|^2$$

$$\text{Gradient: } \frac{\partial J_{\text{Tik}}(\mathbf{s}, \mathbf{y})}{\partial \mathbf{s}} = -\mathbf{s}_0 + (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{L}^T \mathbf{L}) \mathbf{s} \quad \text{with} \quad \mathbf{s}_0 = \mathbf{H}^T \mathbf{y}$$

Steepest-descent algorithm

$$\mathbf{s}^{(k+1)} = \mathbf{s}^{(k)} + \gamma (\mathbf{s}_0 - (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{L}^T \mathbf{L}) \tilde{\mathbf{s}}^{(k)})$$

Conjugate gradient

More efficient, but requires lot of storage

$$\text{Positivity constraint (IC): } [\tilde{\mathbf{s}}^{(k+1)}]_i = \begin{cases} 0, & [\mathbf{s}^{(k+1)}]_i < 0 \\ [\mathbf{s}^{(k+1)}]_i, & \text{otherwise.} \end{cases} \quad (\text{projection on convex set})$$

10-32

Iterative deconvolution: unregularized case

Degraded image:
Gaussian blur + additive noise



van Cittert animation

Ground truth

10-33

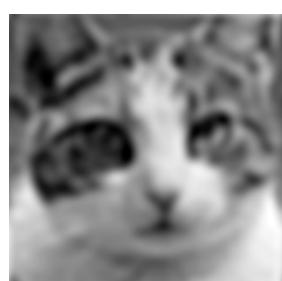
Effect of regularization parameter

Degraded image:
Gaussian blur + additive noise

not enough: $\lambda=0.02$

not enough: $\lambda=0.2$

Optimal regularization: $\lambda=2$



too much: $\lambda=20$



too much: $\lambda=200$

10-34

Designing fast reconstruction algorithms

Normal matrix: $\mathbf{A} = \mathbf{H}^T \mathbf{H}$ (symmetric)

Formal linear solution: $\mathbf{s} = (\mathbf{A} + \lambda \mathbf{L}^T \mathbf{L})^{-1} \mathbf{H}^T \mathbf{y} = \mathbf{R}_\lambda \cdot \mathbf{y}$

Generic form of the iterator: $\mathbf{s}^{(k+1)} = \mathbf{s}^{(k)} + \gamma (\mathbf{s}_0 - (\mathbf{A} + \lambda \mathbf{L}^T \mathbf{L}) \mathbf{s}^{(k)})$

■ Recognizing structured matrices

- \mathbf{L} : convolution matrix $\Rightarrow \mathbf{L}^T \mathbf{L}$: symmetric convolution matrix
- \mathbf{L}, \mathbf{A} : convolution matrices $\Rightarrow (\mathbf{A} + \lambda \mathbf{L}^T \mathbf{L})$: symmetric convolution matrix

■ Fast matrix-free implementation

- Diagonalization of convolution matrices \Rightarrow FFT-based implementation

- Applicable to:
 - deconvolution microscopy (**Wiener filter**)
 - parallel rays computer tomography (**FBP**)
 - MRI, including **non-uniform sampling** of k -space

10-35

Statistical formulation (20th century)

■ Linear measurement model: $\mathbf{y} = \mathbf{H}\mathbf{s} + \mathbf{n}$

\mathbf{n} : additive white Gaussian noise (i. i. d.)

\mathbf{s} : realization of Gaussian process with zero-mean
and covariance matrix $\mathbb{E}\{\mathbf{s} \cdot \mathbf{s}^T\} = \mathbf{C}_s$

Norbert Wiener (1894-1964)

■ Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

$$\mathbf{s}_{\text{MAP}} = \arg \min_{\mathbf{s}} \underbrace{\frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2}_{\text{Data Log likelihood}} + \underbrace{\frac{1}{2} \|\mathbf{C}_s^{-1/2} \mathbf{s}\|_2^2}_{\text{Gaussian prior likelihood}}$$

$$-\log p_{\text{Gauss}}(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_2^2 + \text{Const.}$$

$$\Updownarrow \quad \mathbf{L} = \mathbf{C}_s^{-1/2} : \text{Whitening filter}$$

$\mathbf{u} = \mathbf{L}\mathbf{s}$: standardized Gaussian innovation

■ Quadratic regularization (Tikhonov)

$$\mathbf{s}_{\text{Tik}} = \arg \min_{\mathbf{s}} (\|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2 + \lambda \mathcal{R}(\mathbf{s})) \quad \text{with} \quad \mathcal{R}(\mathbf{s}) = \|\mathbf{L}\mathbf{s}\|_2^2$$

$$\text{Linear solution} : \mathbf{s} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{L}^T \mathbf{L})^{-1} \mathbf{H}^T \mathbf{y} = \mathbf{R}_\lambda \cdot \mathbf{y}$$

10-36

Appendix B: Convergence of iterative least squares

Basic Landweber/van Cittert iteration

$$\begin{aligned}
 \mathbf{s}^{(t+1)} &= \mathbf{s}^{(t)} + \gamma \mathbf{H}^T (\mathbf{y} - \mathbf{H} \mathbf{s}^{(t)}) \\
 &= (\mathbf{I} - \gamma \mathbf{H}^T \mathbf{H}) \mathbf{s}^{(t)} + \gamma \mathbf{H}^T \mathbf{y} \\
 \Rightarrow (\mathbf{s}^{(t+1)} - \mathbf{s}^{(t)}) &= (\mathbf{I} - \gamma \mathbf{H}^T \mathbf{H}) (\mathbf{s}^{(t)} - \mathbf{s}^{(t-1)})
 \end{aligned}$$

Converges iff. $\mathbf{A} = (\mathbf{I} - \gamma \mathbf{H}^T \mathbf{H})$ is a **contraction map**; i.e., $\rho(\mathbf{A}) = \max_{\|\mathbf{e}\|=1} \|\mathbf{A}\mathbf{e}\| < 1$

■ Spectral analysis

\mathbf{A} and $\mathbf{H}^T \mathbf{H}$ are symmetric matrices that share the same eigenvectors \mathbf{u}_n

$$(\mathbf{H}^T \mathbf{H}) \mathbf{u}_n = \lambda_n \mathbf{u}_n \Leftrightarrow \mathbf{A} \mathbf{u}_n = \underbrace{(1 - \gamma \lambda_n)}_{\gamma_n} \mathbf{u}_n$$

■ Condition for convergence

$$\rho(\mathbf{A}) = \max_n |\gamma_n| < 1 \Rightarrow 0 < \gamma < \frac{2}{\lambda_{\max} \{\mathbf{H}^T \mathbf{H}\}} \quad (\text{since } \lambda_n \geq 0 \text{ for all } n)$$

10-37

Part 3:

Sparsity-based image reconstruction
(2nd generation)

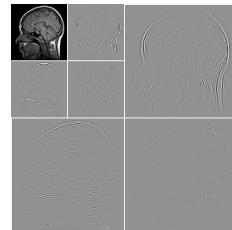
Linear inverse problems: Sparsity

(20th Century) $p = 2 \rightarrow 1$ (21st Century)

$$\mathbf{s}_{\text{rec}} = \arg \min_{\mathbf{s}} (\|\mathbf{y} - \mathbf{Hs}\|_2^2 + \lambda \mathcal{R}(\mathbf{s}))$$

- Non-quadratic regularization regularization

$$\mathcal{R}(\mathbf{s}) = \|\mathbf{Ls}\|_{\ell_2}^2 \rightarrow \|\mathbf{Ls}\|_{\ell_p}^p \rightarrow \|\mathbf{Ls}\|_{\ell_1}$$



- Total variation (Rudin-Osher, 1992)

$$\mathcal{R}(\mathbf{s}) = \|\mathbf{Ls}\|_{\ell_1} \text{ with } \mathbf{L} \text{: gradient}$$

- Wavelet-domain regularization (Figueiredo et al., Daubechies et al. 2004)

$\mathbf{v} = \mathbf{W}^{-1}\mathbf{s}$: wavelet expansion of \mathbf{s} (typically, sparse)

$$\mathcal{R}(\mathbf{s}) = \|\mathbf{v}\|_{\ell_1}$$

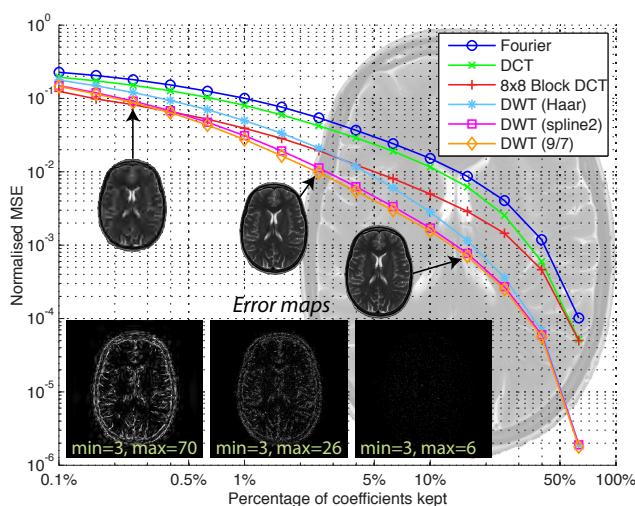
- Compressed sensing/sampling

(Candes-Romberg-Tao; Donoho, 2006)

10-39

Sparsifying transforms

Biomedical images are well described by few basis coefficients



Prior =
sparse
representation

$$\mathcal{R}(\mathbf{s}) = \lambda \|\mathbf{W}^T \mathbf{s}\|_1$$

Advantages:

- convex
- favors sparse solutions
- Fast: WFISTA

(Guerquin-Kern IEEE TMI 2011)

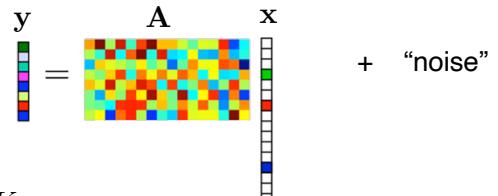
10-40

Theory of compressed sensing

[Donoho et al., 2005; Candès-Tao, 2006, ...]

■ Generalized sampling setting (after discretization)

- Linear inverse problem: $\mathbf{y} = \mathbf{Hs} + \mathbf{n}$
- Sparse representation of signal: $\mathbf{s} = \mathbf{Wx}$ with $\|\mathbf{x}\|_0 = K_0 \ll K$
- $M \times N$ system matrix : $\mathbf{A} = \mathbf{HW}$

$$\mathbf{y} = \mathbf{A} \mathbf{x} + \text{"noise"}$$


■ Formulation of ill-posed recovery problem when $2K_0 < M \ll K$

$$(P0) \quad \min_{\mathbf{x} \in \mathbb{R}^K} \|\mathbf{y} - \mathbf{Ax}\|_2^2 \quad \text{subject to} \quad \|\mathbf{x}\|_0 \leq K_0$$

■ Theoretical result

Under suitable conditions on \mathbf{A} (e.g., restricted isometry), the solution is unique and the recovery problem (P0) is equivalent to:

$$(P1) \quad \min_{\mathbf{x} \in \mathbb{R}^K} \|\mathbf{y} - \mathbf{Ax}\|_2^2 \quad \text{subject to} \quad \|\mathbf{x}\|_1 \leq C_0$$

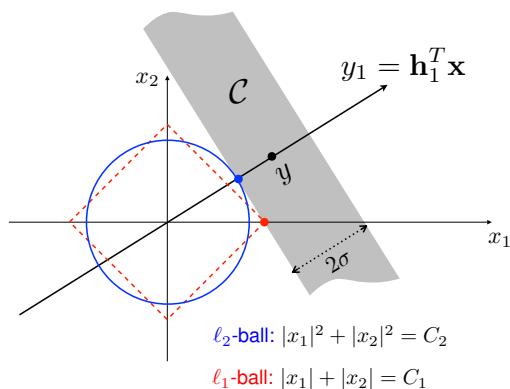
10-41

Geometry of ℓ_2 vs. ℓ_1 minimization

■ Prototypical inverse problem

$$\min_{\mathbf{x}} \{ \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 + \lambda \|\mathbf{x}\|_{\ell_2}^2 \} \Leftrightarrow \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_2} \quad \text{subject to} \quad \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 \leq \sigma^2$$

$$\min_{\mathbf{x}} \{ \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 + \lambda \|\mathbf{x}\|_{\ell_1} \} \Leftrightarrow \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_1} \quad \text{subject to} \quad \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 \leq \sigma^2$$



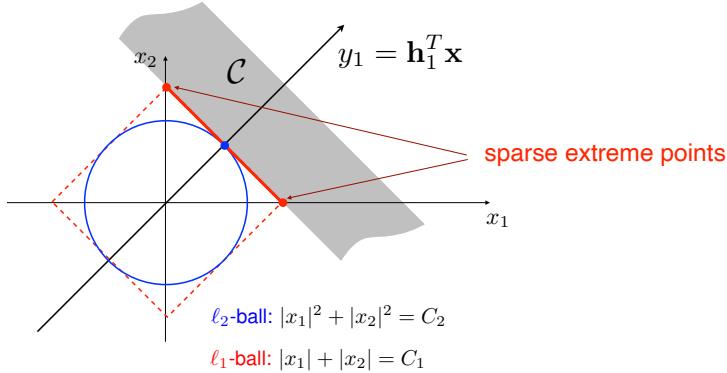
10-42

Geometry of ℓ_2 vs. ℓ_1 minimization

■ Prototypical inverse problem

$$\min_{\mathbf{x}} \{ \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 + \lambda \|\mathbf{x}\|_{\ell_2}^2 \} \Leftrightarrow \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_2} \text{ subject to } \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 \leq \sigma^2$$

$$\min_{\mathbf{x}} \{ \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 + \lambda \|\mathbf{x}\|_{\ell_1} \} \Leftrightarrow \min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_1} \text{ subject to } \|\mathbf{y} - \mathbf{Hx}\|_{\ell_2}^2 \leq \sigma^2$$



Configuration for **non-unique** ℓ_1 solution

10-43

Elements of convex analysis

Definitions

Extended real line: $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$. A function $f : \mathbb{R}^d \rightarrow \overline{\mathbb{R}}$ is said to be:

(i) **proper** if there exists at least one \mathbf{x}_0 such that $f(\mathbf{x}_0) < +\infty$ (by default).

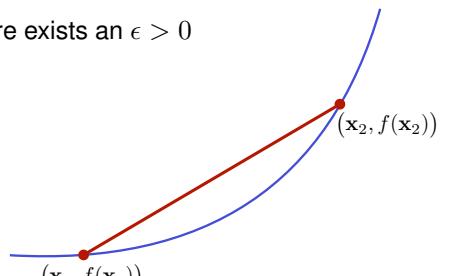
(ii) **coercive** if $f(\mathbf{x}) \rightarrow +\infty$ as $\|\mathbf{x}\| \rightarrow +\infty$.

(iii) **lower semi-continuous** (l.s.c.) at a point \mathbf{x}_0 if, for every $y < f(\mathbf{x}_0)$, there exists an $\epsilon > 0$ such that $y < f(\mathbf{x})$ for every $\mathbf{x} \in B_\epsilon(\mathbf{x}_0) = \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{x}_0\|_2 < \epsilon\}$.

(iv) **convex** if, for all $\lambda \in (0, 1)$ and all $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^d$ such that $\mathbf{x}_1 \neq \mathbf{x}_2$,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2) \leq \lambda f(\mathbf{x}_1) + (1 - \lambda) f(\mathbf{x}_2).$$

(v) **strictly convex** if $f(\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2) < \lambda f(\mathbf{x}_1) + (1 - \lambda) f(\mathbf{x}_2)$.



(ii) + (iii) on $\mathbb{R}^d \Rightarrow f(\mathbf{x})$ is bounded from below and it reaches its infimum = **existence of a minimizer**

(iv) \Rightarrow any local minimum is also global (ii) + (iii) + (v) $\Rightarrow f(\mathbf{x})$ admits a **unique minimizer** over \mathbb{R}^d

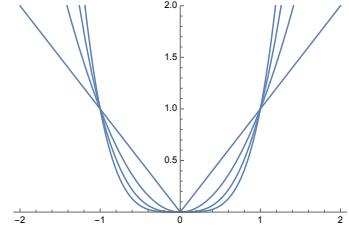
10-44

Examples of convex functions

Set of admissible functions: $\Gamma_0(\mathbb{R}^d) = \{f : \mathbb{R}^d \rightarrow \overline{\mathbb{R}} \text{ s.t. } f \text{ proper, convex and l.s.c. on } \mathbb{R}^d\}$

■ Univariate functions

- If f is differentiable: f is convex $\Leftrightarrow f'(x) = \frac{df(x)}{dx}$ is non-decreasing
- If f is twice differentiable: f is convex $\Leftrightarrow f''(x) = \frac{d^2f(x)}{dx^2} \geq 0$
- Example: $\psi_p(x) = |x|^p$ is continuous (and a fortiori l.s.c.) convex for $p \geq 1$.
It is strictly convex for $p > 1$.



■ Sum of (weighted) convex functions

- Let $f_1, f_2 \in \Gamma_0(\mathbb{R}^d)$. Then, $\alpha_1 f_1 + \alpha_2 f_2 \in \Gamma_0(\mathbb{R}^d)$ for any $\alpha_1, \alpha_2 \in \mathbb{R}^+$.
- Example: $f_p(\mathbf{x}) = \|\mathbf{x}\|_p^p = \sum_{i=1}^d \psi_p(x_i) \in \Gamma_0(\mathbb{R}^d)$. $\|\mathbf{x}\|_p^p$ is strictly convex for $p > 1$.

■ Indicator functions

- Let $C \subseteq \mathbb{R}^d$ be a **closed convex subset** of \mathbb{R}^d . Then, the barrier function

$$i_C(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \in C \\ +\infty, & \text{otherwise} \end{cases} \text{ is l.s.c. and convex.}$$

10-45

Proximity operator

(Moreau 1962)

Set of admissible functions: $\Gamma_0(\mathbb{R}^d) = \{f : \mathbb{R}^d \rightarrow \overline{\mathbb{R}} \text{ s.t. } f \text{ proper, convex and l.s.c. on } \mathbb{R}^d\}$

Definition

The proximity operator of $f \in \Gamma_0(\mathbb{R}^d)$ is the (multivariate) function $\text{prox}_f : \mathbb{R}^d \rightarrow \mathbb{R}^d$ defined by

$$\text{prox}_f(\mathbf{x}) \triangleq \arg \min_{\mathbf{z} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|^2 + f(\mathbf{z}).$$

NB: If $f \in \Gamma_0(\mathbb{R}^d)$, then the minimizer is guaranteed to exist and to be unique.

■ Properties

- Both $\mathbf{x} \mapsto \text{prox}_f(\mathbf{x})$ and $\mathbf{x} \mapsto \mathbf{x} - \text{prox}_f(\mathbf{x})$ are firmly non-expansive.
- The fixed point of $\mathbf{x}^{t+1} = \text{prox}_f(\mathbf{x}^t)$ is the minimizer of $f(\mathbf{x})$

■ Projection on a convex set

- Let i_C be the barrier function associated with the closed convex subset $C \subset \mathbb{R}^d$. Then,

$$\text{prox}_{i_C}(\mathbf{x}) = \arg \min_{\mathbf{z} \in C} \|\mathbf{x} - \mathbf{z}\|_2 = \text{Proj}_C(\mathbf{x})$$

10-46

Proximity operator of $\|\cdot\|_{\ell_1}$ -potential

Let $\Phi : \mathbb{R}^N \rightarrow \overline{\mathbb{R}}$ be a **separable additive** potential with $\Phi(\mathbf{x}) = \sum_{n=1}^N \phi_n(x_n)$ where $\phi_n \in \Gamma_0(\mathbb{R})$.

Then, $\Phi \in \Gamma_0(\mathbb{R}^N)$ (i.e., convex l.s.c.) and

$$\text{prox}_{\Phi}(\mathbf{x}) = \begin{pmatrix} \text{prox}_{\phi_1}(x_1) \\ \vdots \\ \text{prox}_{\phi_N}(x_N) \end{pmatrix} \quad (\text{layer of pointwise nonlinearities})$$

where $\text{prox}_{\phi_n}(x) = \arg \min_{z \in \mathbb{R}} \left(\frac{1}{2}(x-z)^2 + \phi_n(z) \right)$.

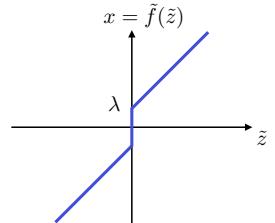
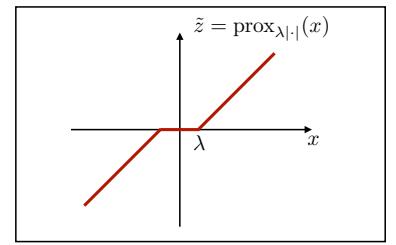
- Special case: $\Phi(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$ with parameter $\lambda \in \mathbb{R}^+$ and $\phi_n(x) = \lambda|x|$.

$$g(x, z) = \frac{1}{2}(z-x)^2 + \lambda|z|$$

$$\text{Optimum at } \tilde{z} \text{ with } \frac{\partial}{\partial z} g(x, \tilde{z}) = (\tilde{z} - x) + \lambda \text{ sign}(\tilde{z}) = 0$$

$$\Rightarrow x = \tilde{z} + \lambda \text{ sign}(\tilde{z}) = \tilde{f}(\tilde{z})$$

$$\Rightarrow \tilde{z} = \text{prox}_{\phi_n}(x) = \tilde{f}^{-1}(x) = \begin{cases} x - \lambda, & x > \lambda \\ 0, & x \in [-\lambda, \lambda] \\ x + \lambda, & x < -\lambda \end{cases} \quad (\text{soft-threshold})$$



10-47

Image reconstruction under sparsity constraints $p = 1$

- Convex optimization problem with non-smooth regularization

$$(1) \quad \mathbf{s}_{\text{sparse}} = \arg \min_{\mathbf{s}} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{Hs}\|_2^2 + g(\mathbf{s}) \right) \quad \text{with} \quad g(\mathbf{s}) = \lambda \|\mathbf{Ls}\|_{\ell_1} \quad (\text{regularization})$$

- Solution by forward-backward splitting (Combettes-Wajs, 2005)

Repeat

$\mathbf{z}^{(n)} = \mathbf{s}^{(n-1)} + \gamma \left(\mathbf{H}^T \mathbf{y} - \mathbf{H}^T \mathbf{H} \mathbf{s}^{(n-1)} \right)$

Guarantee of convergence: $\gamma \leq \frac{2}{\lambda_{\max}(\mathbf{H}^T \mathbf{H})}$

$\mathbf{s}^{(n)} = \text{prox}_{\gamma g}(\mathbf{z}^{(n)})$

Linear step (consistency with **imaging physics**)

until stop criterion

Proximal step (regularization = **prior constraints**)

$$\text{Proximal operator: } \text{prox}_g(\mathbf{z}) = \arg \min_{\mathbf{s}} \left(\frac{1}{2} \|\mathbf{z} - \mathbf{s}\|_2^2 + g(\mathbf{s}) \right)$$

Interpretation: Same as (1) with $\mathbf{H} = \mathbf{I} \Rightarrow$ “**denoising**” of current estimate \mathbf{z}

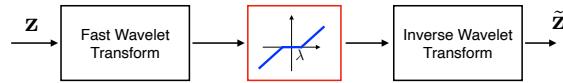
10-48

Efficient proximal denoising: wavelet-domain soft thresholding

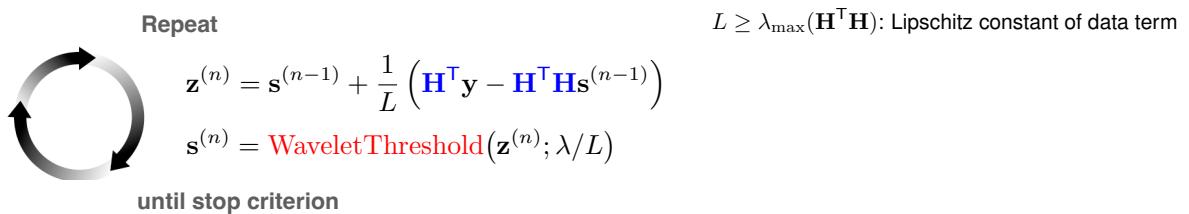
- Regularization: Promote sparsity in an orthogonal wavelet basis

$$g(\mathbf{s}) = \lambda \|\mathbf{W}^\top \mathbf{s}\|_{\ell_1} \quad \text{with} \quad \mathbf{W}^\top \mathbf{W} = \mathbf{I} \quad (\text{Orthonormality})$$

$$\text{Proximal step: } \tilde{\mathbf{z}} = \text{prox}_g(\mathbf{z}) = \arg \min_{\mathbf{s}} \left(\frac{1}{2} \|\mathbf{z} - \mathbf{s}\|_2^2 + \lambda \|\mathbf{W}^\top \mathbf{s}\|_{\ell_1} \right)$$



- Iterative Soft-Thresholding Algorithm (ISTA) (Figueiredo-Nowak 2003)

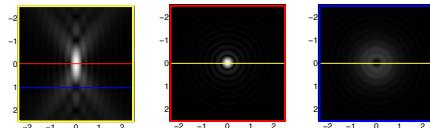


10-49

Deconvolution of fluorescence micrographs

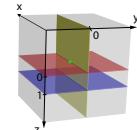
- Physical model of a diffraction-limited microscope

$$g(x, y, z) = (h_{3D} * s)(x, y, z)$$



3-D point spread function (PSF)

$$h_{3D}(x, y, z) = I_0 \left| p_\lambda \left(\frac{x}{M}, \frac{y}{M}, \frac{z}{M^2} \right) \right|^2$$



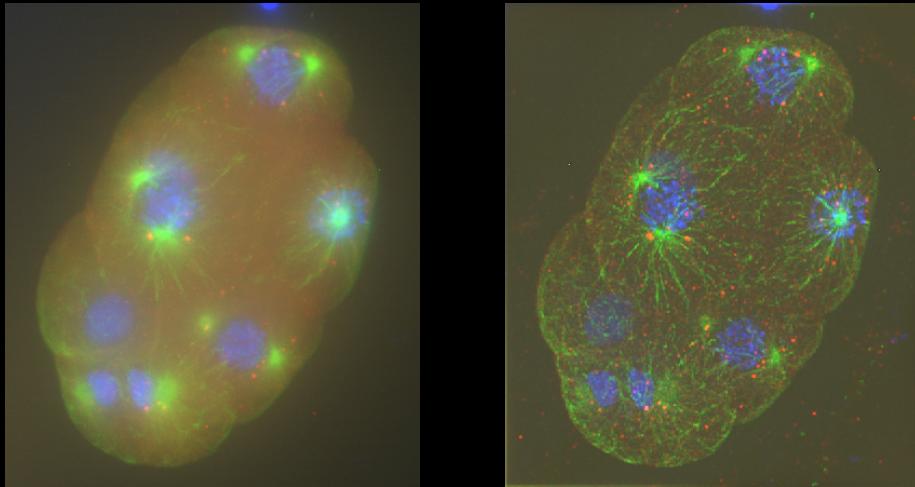
$$p_\lambda(x, y, z) = \int_{\mathbb{R}^2} P(\omega_1, \omega_2) \exp \left(j2\pi z \frac{\omega_1^2 + \omega_2^2}{2\lambda f_0^2} \right) \exp \left(-j2\pi \frac{x\omega_1 + y\omega_2}{\lambda f_0} \right) d\omega_1 d\omega_2$$

Optical parameters

- λ : wavelength (emission)
- M : magnification factor
- f_0 : focal length
- $P(\omega_1, \omega_2) = \mathbb{1}_{\|\omega\| < R_0}$: pupil function
- $\text{NA} = n \sin \theta = R_0/f_0$: numerical aperture

10-50

3D deconvolution of widefield stack



Maximum intensity projections of $384 \times 448 \times 260$ image stacks;
 Leica DM 5500 widefield epifluorescence microscope with a $63 \times$ oil-immersion objective;
 C. elegans embryo labeled with Hoechst, Alexa488, Alexa568;
 wavelet regularization (Haar), 3 decomposition levels for X-Y, 2 decomposition levels for Z.

(Vonesch-U., *IEEE TIP 2009*)

10-51

Extended penalized least-squares formulation

$$(1) \quad \mathbf{s}_\lambda = \arg \min_{\mathbf{s} \in \mathbb{R}^K} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{Hs}\|_2^2 + \lambda \sum_{n=1}^N \Phi([\mathbf{Ls}]_n) \right)$$

- System matrix: $\mathbf{H} \in \mathbb{R}^{M \times K}$
- Regularization operator: $\mathbf{L} \in \mathbb{R}^{N \times K}$ (not necessarily invertible)
- (Weakly-)convex potential $\Phi : \mathbb{R} \rightarrow \mathbb{R}$ (e.g., $\Phi(x) = |x|^p$)

■ Bayesian interpretation: MAP estimator

- i.i.d. Gaussian measurement noise: $\mathbf{n} = \mathbf{y} - \mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}) = \frac{1}{(\sqrt{2\pi\sigma})^M} \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{n}\|^2\right)$
- Statistical signal model (prior): $p(\mathbf{s}) = \exp\left(-\frac{1}{2} \sum_{n=1}^N \Phi([\mathbf{Ls}]_n)\right)$ (Gibbs distribution)

⇒ Maximum a posteriori (MAP) estimator is given by (1) with $\lambda = \sigma^2$.

■ Variants of ISTA

- Inclusion of an inner loop for the iterative evaluation of $\text{prox}_{J_{\text{reg}}}(\mathbf{x})$.
- Acceleration via the use of momentum: FISTA = Fast ISTA (Beck-Teboulle 2009)
- Alternating direction method of multipliers (ADMM) involving an auxiliary variable $\mathbf{u} = \mathbf{Lx}$ (Ramani-Fessler 2010)
 → alternation between some gradient-like updates and a separable prox_Φ on \mathbf{u}
- Incorporation of positivity constraints (barrier functional); splitting, primal-dual formulation (Condat-Vu 2013)

10-52

2D deconvolution experiment



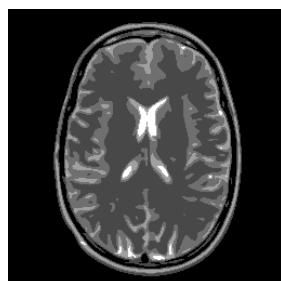
Disk-shaped PSF (7×7), L: gradient (TV-like), optimized parameters

Deconvolution results (SNR in dB)

	Tikhonov	ℓ_1 prior (TV)	relaxed ℓ_0 prior
Astrocytes cells	12.18	10.48	10.52
Pulmonary cells	16.9	19.04	18.34
Stem cells	15.81	20.19	20.5

10-53

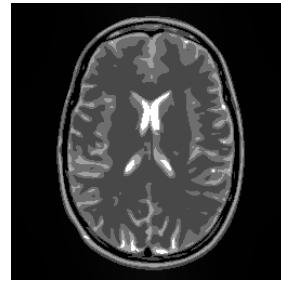
MRI phantom: Spiral sampling in k-space



Original Phantom
(Guerquin-Kern TMI 2012)

L : gradient
Optimized parameters

ℓ_1 prior (TV)
SER = 21.37 dB

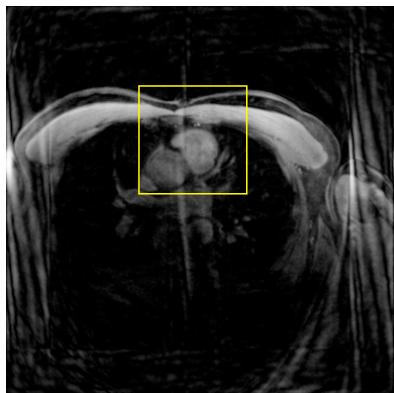


Relaxed ℓ_0 prior
SER = 27.22 dB

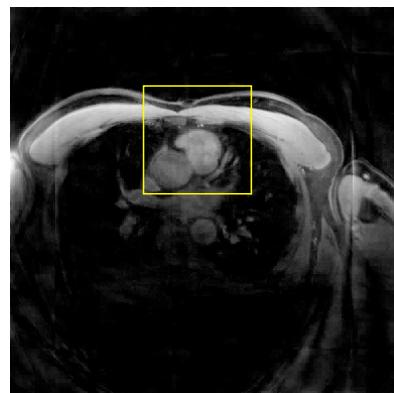
10-54

ISMRM reconstruction challenge

L_2 regularization (Laplacian)



ℓ_1 wavelet regularization



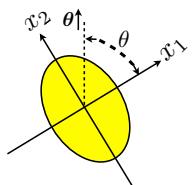
(Guerquin-Kern *IEEE TMI* 2011)

10-55

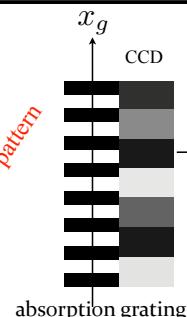
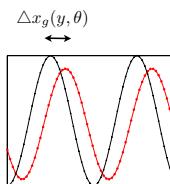
Differential phase-contrast tomography

Paul Scherrer Institute (PSI), Villigen

X-ray Source



phase grating



(Pfeiffer, *Nature* 2006)

Mathematical model

$$y(t, \theta) = \frac{\partial}{\partial t} R_\theta \{s\}(t)$$

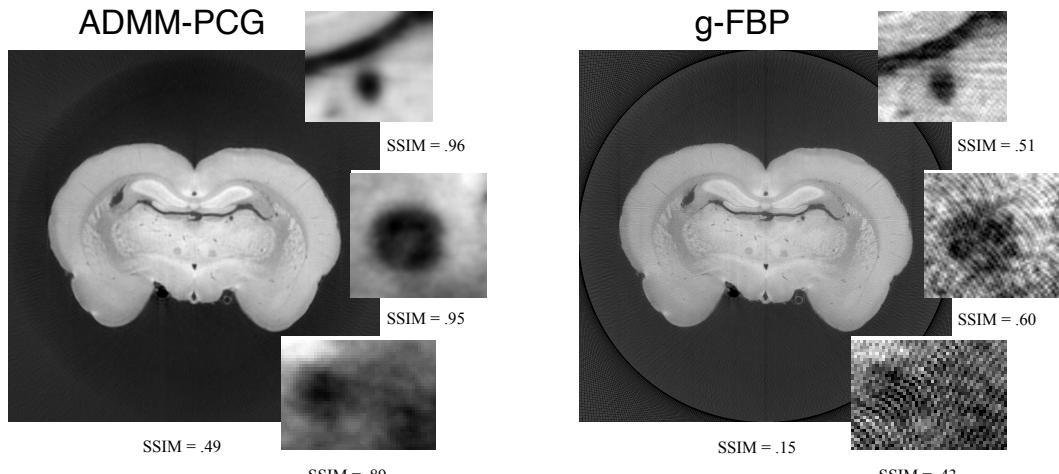
$$\mathbf{y} = \mathbf{H} \mathbf{s}$$

$$[\mathbf{H}]_{(i,j),\mathbf{k}} = \frac{\partial}{\partial t} P_{\theta_j} \beta_{\mathbf{k}}(t_j)$$

10-56

Reducing the numbers of views

Rat brain reconstruction with 181 projections



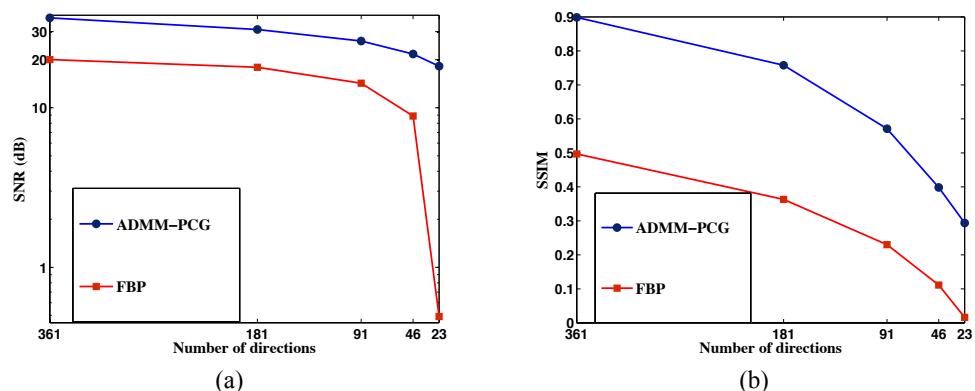
Collaboration: Prof. Marco Stampanoni, TOMCAT PSI / ETHZ

(Nichian et al. *Optics Express* 2013)

10-57

Performance evaluation

Goldstandard: high-quality iterative reconstruction with 721 views



⇒ Reduction of acquisition time by a factor 10 (or more) ?

10-58

Compressed sensing: Applications in imaging

- Magnetic resonance imaging (MRI) (Lustig, *Mag. Res. Im.* 2007)
 GE Healthcare
- Radio Interferometry (Wiaux, *Notic. R. Astro.* 2007)
- Terahertz Imaging (Chan, *Appl. Phys.* 2008)
- Digital holography (Brady, *Opt. Express* 2009; Marim 2010)
- Spectral-domain OCT (Liu, *Opt. Express* 2010)
- Coded-aperture spectral imaging (Arce, *IEEE Sig. Proc.* 2014)
- Localization microscopy (Zhu, *Nat. Meth.* 2012)
- Ultrafast photography (Gao, *Nature* 2014)

10-59

Part 4:

The (deep) learning revolution ⇒ Rise of **data-driven** methods

- First generation of **deep CNN**-based methods for image reconstruction
- **Iterative** reconstruction using **stable—and not so deep**—CNNs

10-60

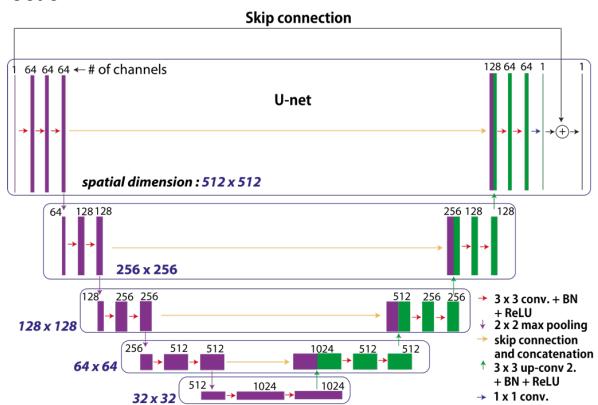
Appearance of Deep ConvNets

(Jin et al. 2016; Adler-Öktem 2017; Chen et al. 2017; ...)

■ CT reconstruction based on Deep ConvNets

- Input: Sparse view FBP reconstruction
- Training: Set of 500 high-quality full-view CT reconstructions
- Architecture: U-Net with skip connection

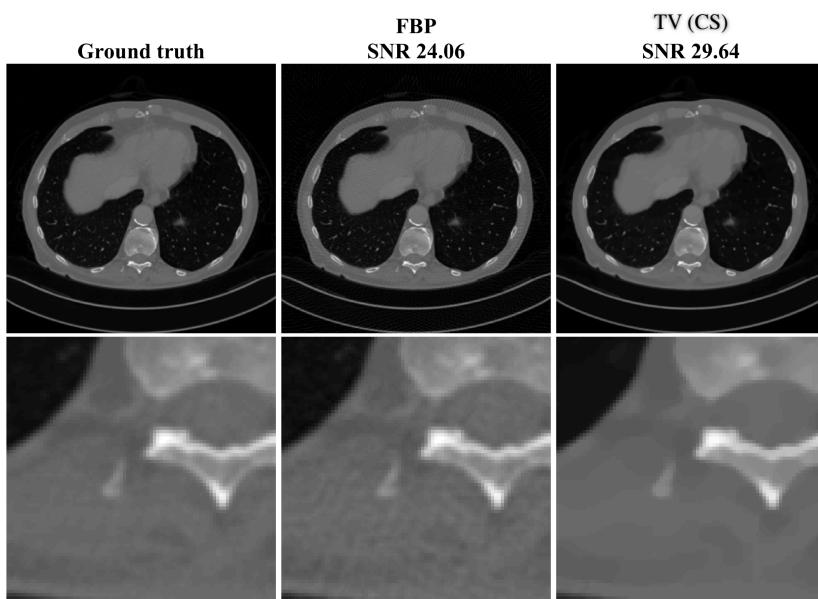
(Jin et al., IEEE TIP 2017)



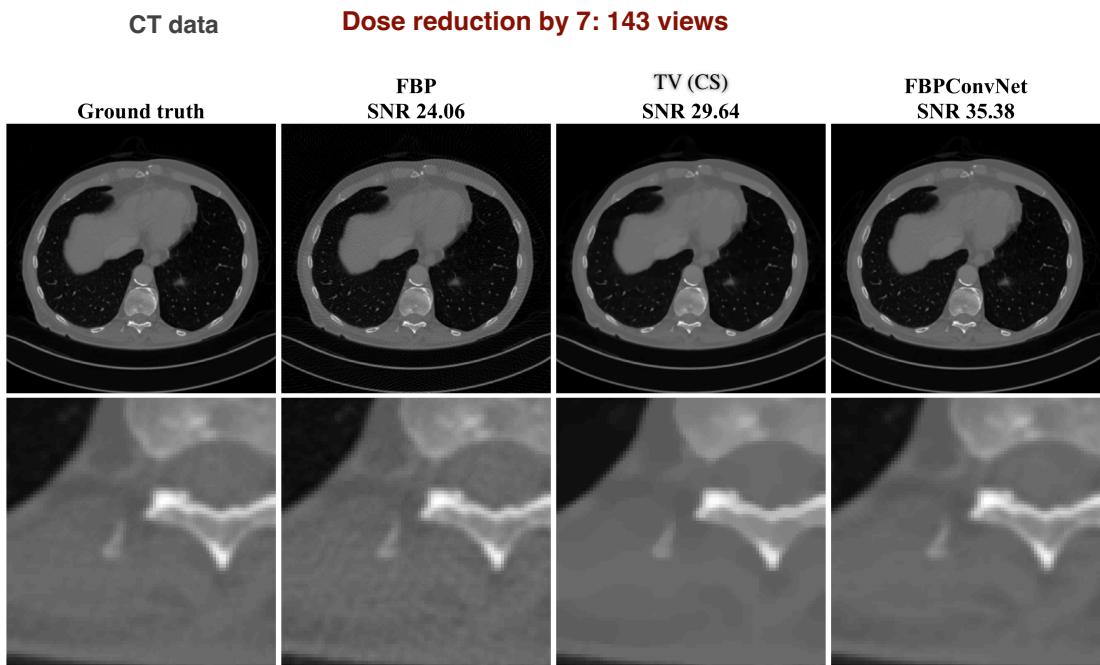
10-61

CT data

Dose reduction by 7: 143 views



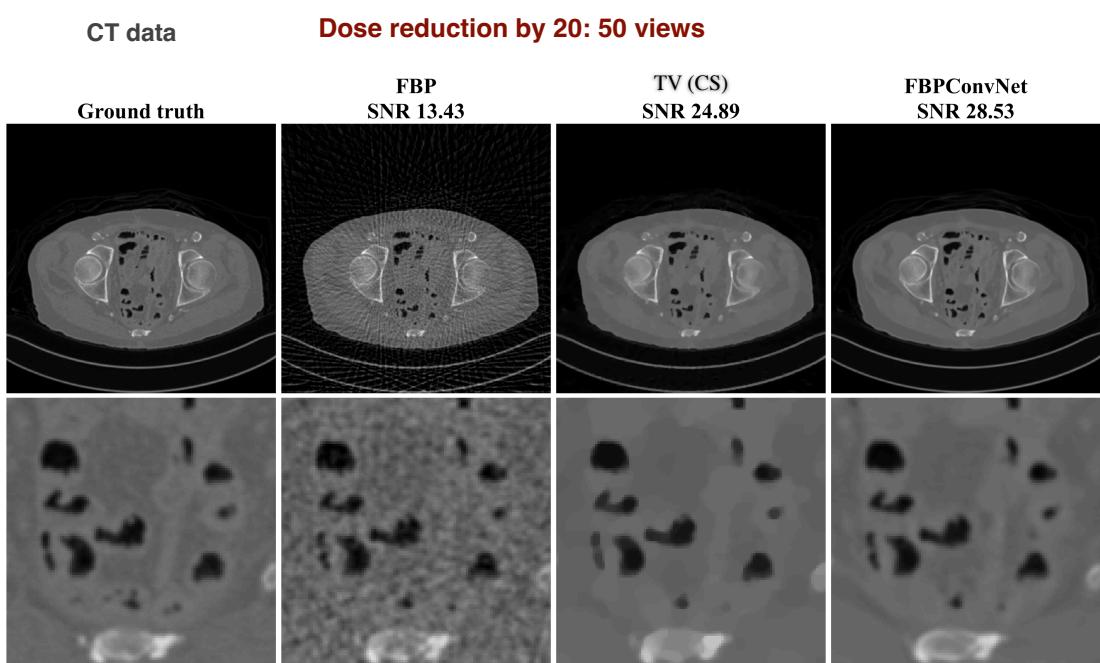
Reconstructed from
from 1000 views



Reconstructed from
from 1000 views

(Jin et al, *IEEE Trans. Im Proc.*, 2017)

2019 Best Paper Award



Reconstructed from
from 1000 views

(Jin et al., *IEEE Trans. Im Proc.*, 2017)

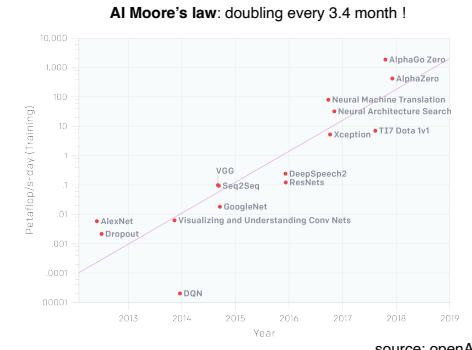
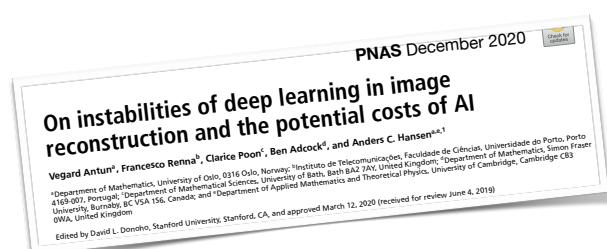
Deep CNNs for bioimage reconstruction images

- X-ray tomography (Jin...Unser, *IEEE TIP* 2017) (Chen...Wang, *Biomed Opt. Exp* 2017)
- Magnetic resonance imaging (MRI) (Hammernik...Pock, *Mag Res Med* 2018) (Tezcan...Konukoglu, *IEEE TMI* 2018)
- Dynamic MRI (cardial imaging) (Schlemper...Rueckert, *IEEE TMI* 2018) (Hauptmann...Arridge, *Mag Res Med* 2019)
- 2D microscopy (Rivenson...Ozcan, *Optica* 2017)
- 3D fluorescence microscopy (Weigert...Jug, Myers, *Nature Meth.* 2018)
- Super-resolution microscopy (Nehme...Shechtman, *Optica* 2018)
- Diffraction tomography (Sun...Kamilov, *Optics Express* 2018)
- Ultrasound (Yoon...Ye, *IEEE TMI* 2019)

10-65

But CNN-based methods also have their weaknesses

- They require **lots of training data**
 - Medical imaging: limited access to patient data
 - Lack of gold standards (except for compressed sensing scenarios)
 - Training for (3D) medical imaging is **extremely computer intensive**
- They are **hard to tune**
 - Many design parameters: depth, width, number of channels
 - Use of ad hoc modules: batch normalization
- They **lack robustness**
 - Adversarial attacks
 - Unpredictable results



10-66

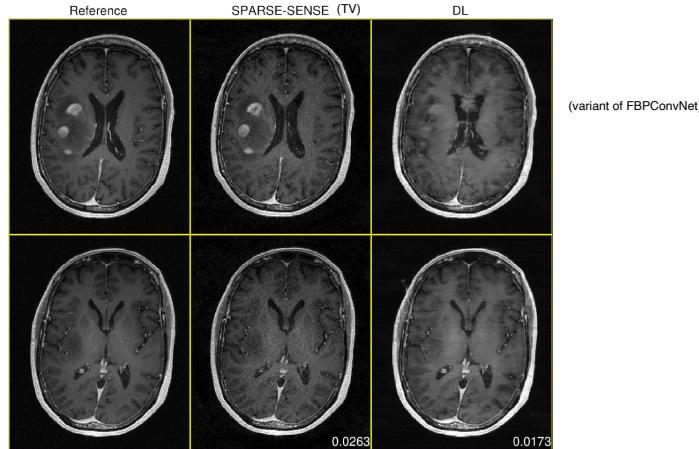


Figure 3: Reconstructions in a case of anaplastic astrocytoma, a rare malignant brain tumor. SPARSE-SENSE and DL reconstructions are from the same 4x-accelerated retrospectively undersampled acquisition. DL achieves lower whole-volume MAE than SPARSE-SENSE, but fails to properly reconstruct regions near the tumor.

G. Nataraj and R. Otazo. "Investigating robustness to unseen pathologies in model-free deep multicoil reconstruction." ISMRM 2020 Workshop on Data Sampling & Image Reconstruction

PnP-FBS variant of Iterative Image Reconstruction

Schematic structure of iterative reconstruction algorithm : $\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{Hx}\|^2 + g(\mathbf{x}) \right)$

N_{iter} Repeat
 $\mathbf{z}^{(n)} = \mathbf{x}^{(n-1)} + \alpha \left(\mathbf{H}^T \mathbf{y} - \mathbf{H}^T \mathbf{H} \mathbf{x}^{(n-1)} \right)$ Linear step (consistency with **imaging physics**)
 $\mathbf{x}^{(n)} = \text{prox}_{\alpha g}(\mathbf{z}^{(n)})$ Proximal or "**denoising**" step (regularization)

until stop criterion

Proximal operator: $\text{prox}_g(\mathbf{z}) = \arg \min_{\mathbf{x}} \left(\frac{1}{2} \|\mathbf{z} - \mathbf{x}\|^2 + g(\mathbf{x}) \right)$

Plug-and-Play variant

(Venkatakrishnan-Bouman 2013)

N_{iter} Repeat
 $\mathbf{z}^{(n)} = \mathbf{x}^{(n-1)} + \alpha \left(\mathbf{H}^T \mathbf{y} - \mathbf{H}^T \mathbf{H} \mathbf{x}^{(n-1)} \right)$ Linear step (consistency with **imaging physics**)
 $\mathbf{x}^{(n)} = ((1 - \beta) \text{Id} + \beta f_{\theta})(\mathbf{z}^{(n)})$ Suitable **nonlinear map** (e.g., CNN)

until stop criterion

Requirement for convergence: $\|f_{\theta}\|_{\text{Lip}} \leq 1$ (Non-expansive operator) (Bauschke-Combettes 2017, Hertrich et al. 2021)

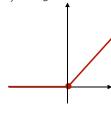
Deep neural network with stability control

- Layers: $\ell = 1, \dots, L$

- Deep structure descriptor: (N_0, N_1, \dots, N_L)

- Neuron or node index: (n, ℓ) , $n = 1, \dots, N_\ell$

- Activation function: $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ (ReLU)



- Linear step: $\mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_\ell}$

$$\mathbf{f}_\ell : \mathbf{x} \mapsto \mathbf{f}_\ell(\mathbf{x}) = \mathbf{W}_\ell \mathbf{x} + \mathbf{b}_\ell$$

- Nonlinear step: $\mathbb{R}^{N_\ell} \rightarrow \mathbb{R}^{N_\ell}$

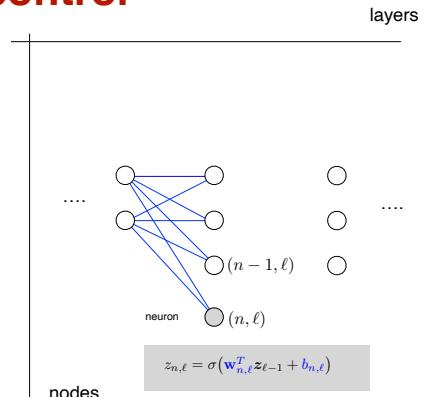
$$\sigma_\ell : \mathbf{x} \mapsto \sigma_\ell(\mathbf{x}) = (\sigma(x_1), \dots, \sigma(x_{N_\ell}))$$

■ Controlling Lipschitz stability

$$\|\mathbf{f}_{\text{deep}}\|_{\text{Lip}} = \sup_{\mathbf{x} \neq \mathbf{x}'} \frac{\|\mathbf{f}_{\text{deep}}(\mathbf{x}) - \mathbf{f}_{\text{deep}}(\mathbf{x}')\|}{\|\mathbf{x} - \mathbf{x}'\|} \leq \prod_{\ell=1}^L \underbrace{\|\sigma_\ell\|_{\text{Lip}}}_{=1} \underbrace{\|\mathbf{W}_\ell\|_{\mathcal{S}_\infty}}_{=1}$$

Spectral normalization (Miyato ICLR 2018)

10-69



$$\mathbf{f}_{\text{deep}}(\mathbf{x}) = (\sigma_L \circ \mathbf{f}_L \circ \sigma_{L-1} \circ \dots \circ \sigma_2 \circ \mathbf{f}_2 \circ \sigma_1 \circ \mathbf{f}_1)(\mathbf{x})$$

Neural nets with free-form activations and stability

- Layers: $\ell = 1, \dots, L$

- Deep structure descriptor: (N_0, N_1, \dots, N_L)

- Neuron or node index: (n, ℓ) , $n = 1, \dots, N_\ell$

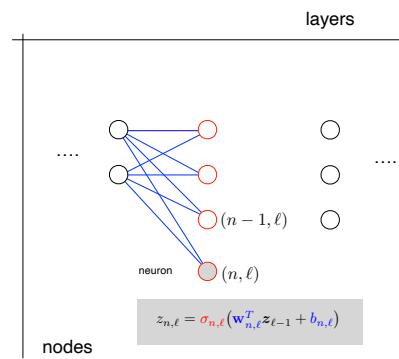
- Activation function $\sigma_{n, \ell} : \mathbb{R} \rightarrow \mathbb{R}$ (free-form)

- Linear step: $\mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_\ell}$

$$\mathbf{f}_\ell : \mathbf{x} \mapsto \mathbf{f}_\ell(\mathbf{x}) = \mathbf{W}_\ell \mathbf{x} + \mathbf{b}_\ell$$

- Nonlinear step: $\mathbb{R}^{N_\ell} \rightarrow \mathbb{R}^{N_\ell}$

$$\sigma_\ell : \mathbf{x} \mapsto \sigma_\ell(\mathbf{x}) = (\sigma_{n, \ell}(x_1), \dots, \sigma_{n, \ell}(x_{N_\ell}))$$



$$\mathbf{f}_{\text{deep}}(\mathbf{x}) = (\sigma_L \circ \mathbf{f}_L \circ \sigma_{L-1} \circ \dots \circ \sigma_2 \circ \mathbf{f}_2 \circ \sigma_1 \circ \mathbf{f}_1)(\mathbf{x})$$

Joint learning / training

$$\text{Stability control: } \|\mathbf{f}_{\text{deep}}\|_{\text{Lip}} \leq \prod_{\ell=1}^L \underbrace{\|\sigma_\ell\|_{\text{Lip}}}_{\text{Lip-1 splines}} \underbrace{\|\mathbf{W}_\ell\|_{\mathcal{S}_\infty}}_{\text{spectral normalization vs. Parseval frame}} = 1$$

Lip-1 splines

spectral normalization vs. Parseval frame

10-70

Learning activation functions / pointwise

Finding the “optimal” pointwise nonlinearity $\sigma : \mathbb{R} \rightarrow \mathbb{R}$

Infinite-dimensional optimization problem is that is inherently ill-posed

■ Incorporating a **regularization**

- Should not penalize simple solutions (e.g., identity or linear scaling)
- Should impose differentiability (for DNN to be trainable via backpropagation)
- Should favor simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

$$\Rightarrow \text{minimizing/constraining } \text{TV}^{(2)}(\sigma) \triangleq \|\mathbf{D}^2\sigma\|_{\mathcal{M}} \quad (\text{Second-order total-variation})$$

■ Controlling **stability**: $\text{Lip}(\sigma) \triangleq \sup_{x \in \mathbb{R}} |\mathbf{D}\sigma(x)| \leq 1$

■ Search space: $\text{BV}^{(2)}(\mathbb{R}) = \{f : \mathbb{R} \rightarrow \mathbb{R} : \|\mathbf{D}^2f\|_{\mathcal{M}} < \infty\} \subset \text{Lip}(\mathbb{R})$

10-71

TV⁽²⁾ regularization with slope constraints

Generic loss functional $E : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^+$ (strictly convex)

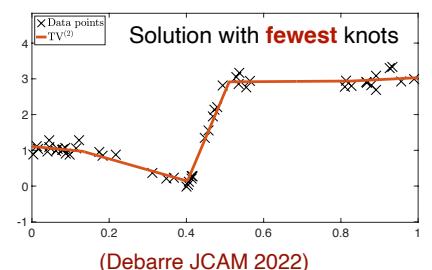
Slope parameters: $s_{\min} < s_{\max}$

$$\begin{aligned} (\text{TV2-SC}) \quad S = \arg \min_{f \in \text{BV}^{(2)}(\mathbb{R})} & \left(\sum_{m=1}^M E(f(x_m), y_m) + \lambda \text{TV}^{(2)}(f) \right), \\ \text{s.t.} \quad & s_{\min} \leq f'(x) \leq s_{\max}, \quad \forall x \in \mathbb{R} \end{aligned}$$

Theorem (new improved: for Stéphane Mallat’s birthday)

The solution set of (TV2-SC) is a non-empty, weak*-compact subset of $\text{BV}^{(2)}(\mathbb{R})$, and **all its extreme points** are **adaptive piecewise-linear splines** with at most $(M - 2)$ knots.

The **sparsest spline** solution is identifiable using a variant of Debarre’s algorithm.



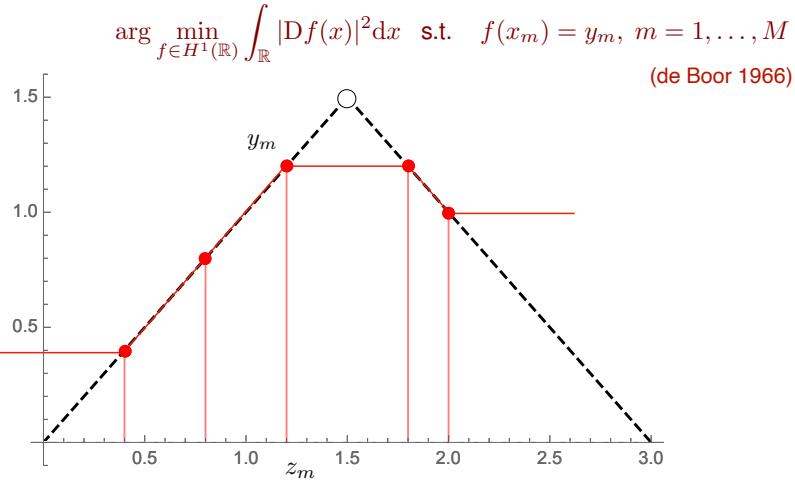
■ Special cases of (s_{\min}, s_{\max})

- $(-1, 1)$: Lipschitz-1 splines (Aziznejad, IEEE OJSP 2022)
- $(0, 1)$: firmly non-expansive = prox of a convex potential
- $(0, +\infty)$: monotone splines = derivative of a convex potential
- $(-\rho, +\infty)$ with $0 < \rho$ (small): weakly-monotone splines = derivative of a ρ -weakly-convex potential

$(s_{\min}, s_{\max}) = \mathbb{R}$ (unconstrained)

10-72

Comparison of linear interpolators



\mathcal{M} -norm = weak extension of L_1 norm:

$$\|f\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}): \|\varphi\|_{L_\infty} \leq 1} \langle f, \varphi \rangle$$

$$\arg \min_{f \in BV^{(2)}(\mathbb{R})} \|D^2 f\|_{\mathcal{M}} \quad \text{s.t.} \quad f(x_m) = y_m, \quad m = 1, \dots, M$$

(U. JMLR 2019; Lemma 2)

10-73

Representer theorem for stable, free-form deep neural

Theorem (Optimality of Lipschitz-1 deep spline networks)

(Unser et al., ACHA 2025)

- neural network $\mathbf{f} : \mathbb{R}^{N_0} \rightarrow \mathbb{R}^{N_L}$ with **deep structure** (N_0, N_1, \dots, N_L)
 $\mathbf{x} \mapsto \mathbf{f}_{\text{deep}}(\mathbf{x}) = (\sigma_L \circ \mathbf{f}_L \circ \sigma_{L-1} \circ \dots \circ \mathbf{f}_2 \circ \sigma_1 \circ \mathbf{f}_1)(\mathbf{x})$
- linear transformations $\mathbf{f}_\ell : \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_\ell}, \mathbf{x} \mapsto \mathbf{W}_\ell \mathbf{x}$ with $\mathbf{W}_\ell \in \mathbb{R}^{N_\ell \times N_{\ell-1}}$
- free-form** activations $\sigma_\ell = (\sigma_{1,\ell}, \dots, \sigma_{N_\ell,\ell}) : \mathbb{R}^{N_\ell} \rightarrow \mathbb{R}^{N_\ell}$ with $\sigma_{1,\ell}, \dots, \sigma_{N_\ell,\ell} \in BV^{(2)}(\mathbb{R})$

Given a series data points $(\mathbf{x}_m, \mathbf{y}_m)$ $m = 1, \dots, M$, we then define the training problem

$$\begin{aligned} \arg \min_{(\mathbf{W}_\ell), (\sigma_{n,\ell}) \in BV^{(2)}(\mathbb{R})} & \left(\sum_{m=1}^M E(\mathbf{y}_m, \mathbf{f}_{\text{deep}}(\mathbf{x}_m)) + \lambda \sum_{\ell=1}^L \sum_{n=1}^{N_\ell} \text{TV}^{(2)}(\sigma_{n,\ell}) \right) \\ \text{s.t.} \quad & \text{Lip}(\sigma_{n,\ell}), \|\mathbf{W}_\ell\|_{\mathcal{S}_\infty} \leq 1, \quad (n = 1, \dots, N_\ell, \ell = 1, \dots, L) \end{aligned} \quad (1) \quad \Rightarrow \text{Lip}(\mathbf{f}_{\text{deep}}) \leq 1$$

where $E : \mathbb{R}^{N_L} \times \mathbb{R}^{N_L} \rightarrow \mathbb{R}^+$ is an arbitrary convex loss function.

The solution of (1) exists and is achieved by a **deep spline network** with activations of the form

$$\sigma_{n,\ell}(x) = b_{1,n,\ell} + b_{2,n,\ell}x + \sum_{k=1}^{K_{n,\ell}} a_{k,n,\ell} \text{ReLU}(x - \tau_{k,n,\ell}),$$

with adaptive parameters $K_{n,\ell} \leq M - 2, \tau_{1,n,\ell}, \dots, \tau_{K_{n,\ell},n,\ell} \in \mathbb{R}$, and $b_{1,n,\ell}, b_{2,n,\ell}, a_{1,n,\ell}, \dots, a_{K_{n,\ell},n,\ell} \in \mathbb{R}$.

Precursor without stability: (Unser, JMLR 2019)

10-74

Outcome of representer theorem: deep splines

Each neuron (fixed index (n, ℓ)) is a **piecewise-linear spline**, characterized by

- its number $0 \leq K_{n,\ell}$ of knots (ideally, much smaller than M);
- the location $\{\tau_k = \tau_{k,n,\ell}\}_{k=1}^{K_{n,\ell}}$ of these knots (ReLU biases);
- the expansion coefficients $\mathbf{b}_{n,\ell} = (b_{1,n,\ell}, b_{2,n,\ell}) \in \mathbb{R}^2$,
- $\mathbf{a}_{n,\ell} = (a_{1,n,\ell}, \dots, a_{K,n,\ell}) \in \mathbb{R}^K$.

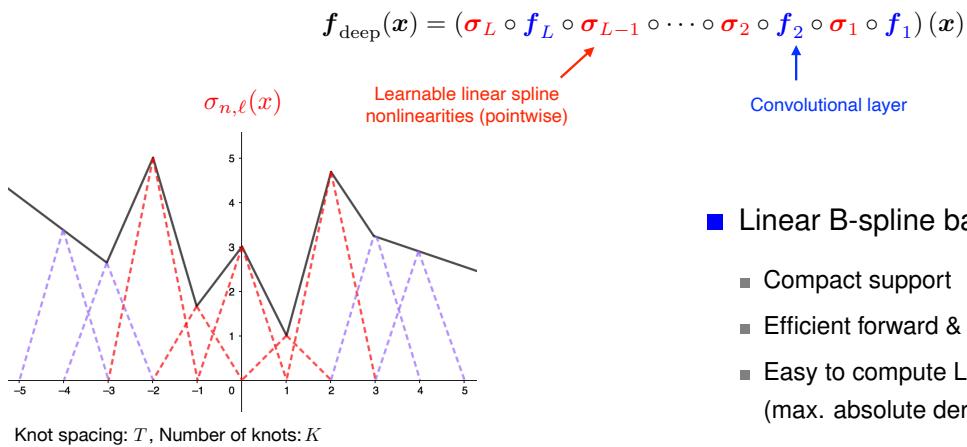
These parameters (including the number of knots) are **data-dependent** and adjusted automatically during training.

■ Link with ℓ_1 minimization techniques

$$\text{TV}^{(2)}(\sigma_{n,\ell}) = \sum_{k=1}^{K_{n,\ell}} |a_{k,n,\ell}| = \|\mathbf{a}_{n,\ell}\|_1 \quad \text{and} \quad \text{Lip}(\sigma_{n,\ell}) = \sup_{K \in \{1, \dots, K_{n,\ell}\}} \left| \sum_{k=1}^K a_{k,n,\ell} \right|$$

10-75

Implementation: Lip-1 spline CNN (trained for



■ Linear B-spline basis

- Compact support
- Efficient forward & backward pass
- Easy to compute Lipschitz constant (max. absolute derivative)

(Bohra et al. *IEEE Open JSP 2020*)

■ Constrain Lipschitz constant of each layer to be no greater than one

- Convolutional layer: Lip-1 projector (spectral normalization vs. Parseval frame)
- Linear spline layer: Lip-1 spline projector

(Ducotterd et al. *JMLR 2024*)

10-76

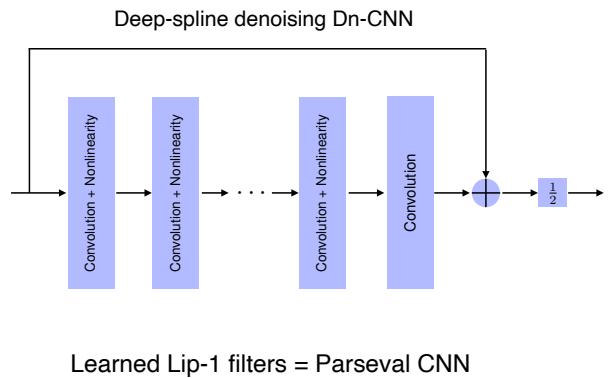
PnP image reconstruction: Experimental set-up

■ Training of Gaussian denoiser

- 240K examples of 40×40 patches from BSD500 dataset
- Additive Gaussian noise with $\sigma = 5/255$
- 3×3 convolution kernels, 32 channels
- Deep spline activations with $T = 0.1, K = 51$
- Number of layers = 3, 5, 7, 9

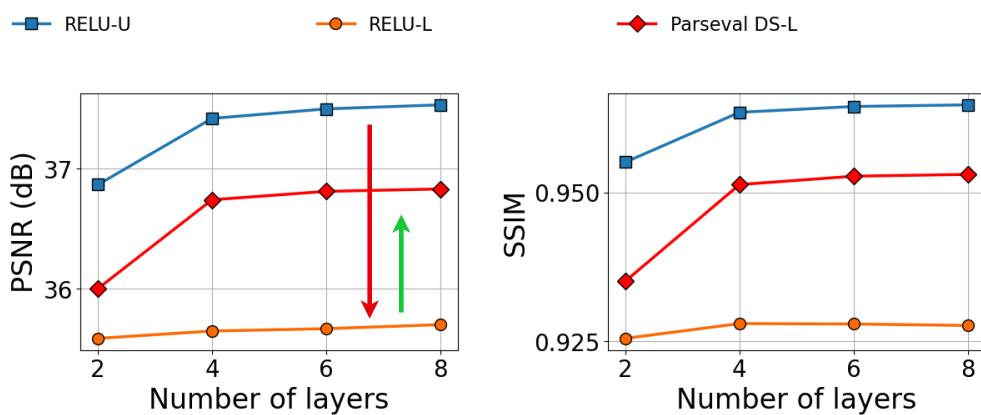
■ Compressed sensing MRI

- 256×256 ground-truth images
- Subsampling ratio = 0.3
- Gaussian additive noise with $\sigma = 10/255$
- Number of layers of denoising CNN = 5



10-77

Results: Gaussian denoising with Parseval CNN



↓ Drop in performance for constrained ReLU nets

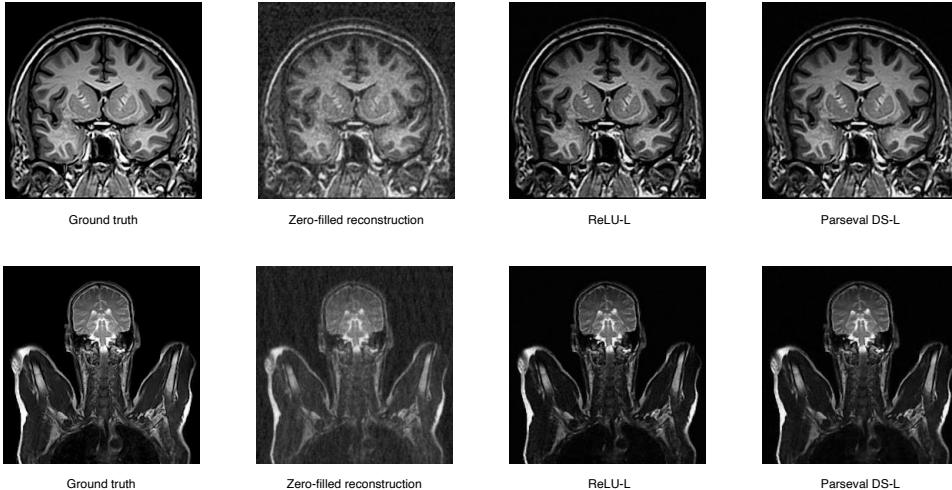
↑ DS-L performs better than ReLU-L even with fewer parameters

10-78

Compressed Sensing MRI

Subsampling mask	Random		Radial		Cartesian	
Image type	Brain	Bust	Brain	Bust	Brain	Bust
Zero-filling	23.72	25.88	22.99	23.92	21.34	23.03
ReLU-L	30.70	30.59	29.60	30.09	23.70	26.87
Parseval DS-L	33.19	33.88	31.68	33.15	24.97	28.68

Random sampling pattern



10-79

WCRR variant: Learnable Weakly-Convex Ridge

$$\min_{\mathbf{x} \in \mathbb{R}^N} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{Hx}\|_2^2 + \sum_{i=1}^{I_{\text{chan}}} \langle \mathbf{1}, \Phi_i(\mathbf{W}_i \mathbf{x}) \rangle \right) \quad \text{Weakly-convex extension of FoE (Chen-Pock 2014)}$$

- System matrix: $\mathbf{H} \in \mathbb{R}^{M \times N}$
- Learnable filters (CNN): $\mathbf{W}_i \in \mathbb{R}^{N \times N}$, $i = 1, \dots, I_{\text{chan}}$
- Shared free-form potentials: $\Phi_i(\mathbf{u}) = (\Phi_i(u_1), \dots, \Phi_i(u_N))$ with $\Phi_i(u) = \int_{-\infty}^u \phi_i(x) dx$

■ Iterative reconstruction

Recurrent neural network (steepest descent)

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - \alpha \left(\sum_{i=1}^{I_{\text{chan}}} \mathbf{W}_i^T \phi_i(\mathbf{W}_i \mathbf{x}^{(n)}) + \mathbf{H}^T (\mathbf{Hx}^{(n)} - \mathbf{y}) \right) \quad \text{with} \quad \phi_i = \Phi_i'$$

(Goujon, SIAM J. Im. Sci 2025)

■ Training on denoising problem

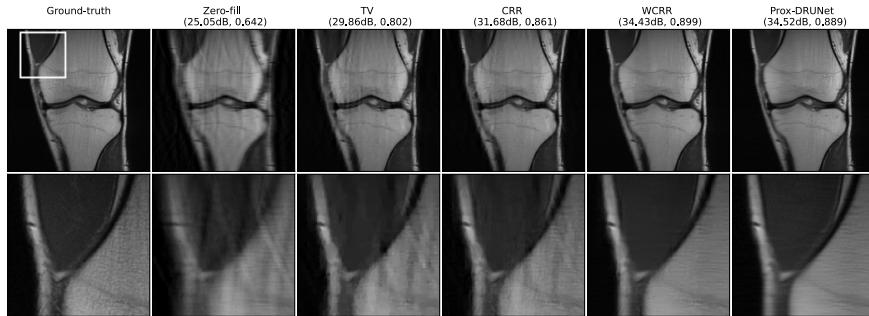
- Parametrization of the slope: $\phi_i = \Phi_i' : \mathbb{R} \rightarrow \mathbb{R}$
s.t. weak-monotonicity constraint and penalty on $\text{TV}^{(2)}(\phi_i)$ (sparsity) \Rightarrow **linear splines**
- Deep equilibrium training of variational denoiser where the ϕ_i are expanded in a B-spline basis.

10-80

Table 4.1
PSNR and SSIM values for both reconstruction experiments.

Metric	PSNR	SSIM	Metric	PSNR	SSIM	Param.
Zero-fill	27.92	0.711	TV	31.57	0.852	1
TV[5]	32.03	0.7922	ACR [37]	31.58	0.848	$6 \cdot 10^5$
CRR-NN [19]	33.14	0.842	CRR-NN	32.87	0.862	$5 \cdot 10^3$
WCRR-NN	34.55	0.858	AR [34]	33.62	0.875	$2 \cdot 10^7$
Prox-DRUNet [23]	35.09	0.864	WCRR-NN	34.06	0.895	$2 \cdot 10^4$
			Prox-DRUNet	34.20	0.901	$2 \cdot 10^7$

(a) MRI



(b) CT

but, PSNR (or SSIM) is not the whole story

Theoretical guarantees : convergence, consistency, stability

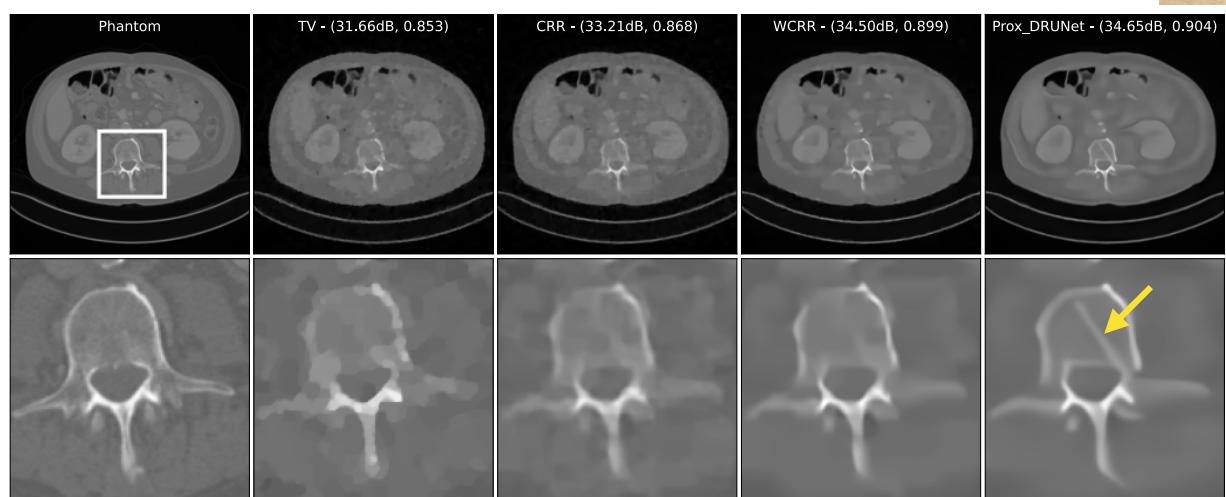
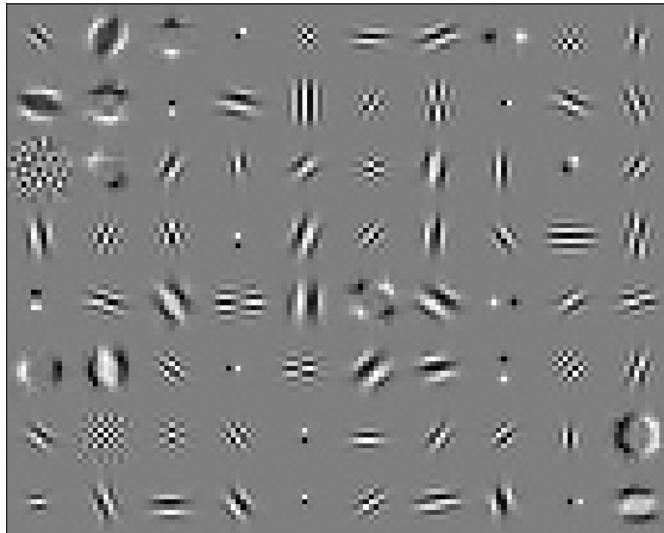


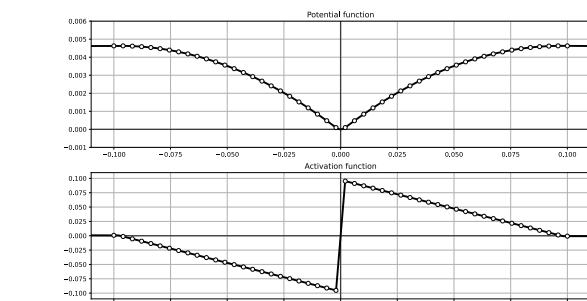
Figure 4.2. Reconstructions for the sparse-view CT experiment. The reported metrics are PSNR and SSIM.

Learned filters and nonlinearities

80 channels



Un panorama d'ondelettes



Nonlinearities are shared up to a channel-wise scaling factor

et une “spline” bien dimensionnée

10-83

Conclusion: Current status of computational imaging

■ Classical reconstruction algorithms

- Are typically linear and have a fast implementation (e.g. filtered backprojection)
- Can be derived from the minimization of a quadratic cost functional
- Use regularization to deal with ill-posedness and to avoid amplification of noise
- Are well understood and come with theoretical guarantees (stability, etc.)

■ 2nd generation methods / compressed sensing

- Derived from the minimization of a convex (sparsity-promoting) cost functional
- Iterative reconstruction (Gradient-based or proximal)
- Can handle more extreme scenarios (lower dose, less measurements)

■ Work in progress: The learning revolution

- Amazing reconstruction results / state-of-the-art in current challenges
- Still poorly understood, requires lots of training
- Lack of robustness, tendency to hallucinate

Stability/trust vs. performance ?

10-84

Conclusion: Cont'd

- What benefits all approaches
 - Deep understanding of the imaging physics \Rightarrow accurate forward model
 - Proper discretization via the use of appropriate basis functions
 - Fast, matrix-free implementation of forward model/normal matrix (whenever possible)
- How the newer CNN-based methods profit from the older ones
 - CNN variant of “classical” PnP iterative reconstruction pipeline
 - Enforcing stability (Lip-1) to guarantee convergence
 - Producing reconstruction that are **consistent** with the measurements
 - Search for shallower architecture for faster training and inference

10-85

References

- Foundations
 - M.T. McCann, M. Unser, **Biomedical Image Reconstruction: From the Foundations to Deep Neural Networks**, *Foundations and Trends in Signal Processing*, vol. 13, no. 3, pp. 280-359, December 2019.
- Examples of algorithm design and imaging modalities
 - M. Guerquin-Kern, M. Häberlin, K.P. Pruessmann, M. Unser, “A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging,” *IEEE Transactions on Medical Imaging*, vol. 30, no. 9, pp. 1649-1660, 2011.
 - M. Nilchian, C. Vonesch, S. Lefkimmatis, P. Modregger, M. Stampanoni, M. Unser, “Constrained Regularized Reconstruction of X-Ray-DPCI Tomograms with Weighted-Norm,” *Optics Express*, vol. 21, no. 26, pp. 32340-32348, 2013.
- A glimpse at on-going research: Deep spline framework
 - M. Unser, “A Representer Theorem for Deep Neural Networks,” *Journal of Machine Learning Research*, vol. 20, no. 110, pp. 1-30, 2019.
 - P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser, “Learning Activation Functions in Deep (Spline) Neural Networks,” *IEEE Open Journal of Signal Processing*, Vol. 1, pp. 295-309, 2020.
 - A. Goujon, S. Neumayer, P. Bohra, S. Ducotterd, M. Unser, “A Neural-Network-Based Convex Regularizer for Image Reconstruction,” *IEEE Transactions on Computational Imaging*, vol. 9, pp. 781–795, 2023.

10-86