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10-Unser: Image processing

OUTLINE

■ 1. Imaging as an inverse problem
■ Basic imaging operators
■ Discretization of the inverse problem
■ Appendix A: Magnetic Resonance Imaging

■ 2. Classical reconstruction algorithms
■ Vector calculus
■ Basic reconstruction: Least-squares solution
■ Tikhonov regularization
■ Iterative reconstruction
■ Wiener / LMSE solution

■3. 2nd generation methods: the sparsity (re)evolution
■ Sparsity and compressed sensing
■ Elements of convex analysis
■ Proximity operators
■ Image reconstruction under sparsity constraints

■4. The learning revolution
■ Image reconstruction using deep neural networks
■ iterative (PnP) schemes
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Computational imaging = Image reconstruction 

3

noise

n

Linear forward model

s
Integral operator

H

y = Hs+ n

Problem: recover s from noisy measurements y

Backprojection (poor man’s solution): s ⇡ H
T
y

The easy scenario
Hypotheses: H is well conditioned & noise is negligible

) s ⇡ H
�1

y) s ⇡ (HT
H)�1

H
T
y

Basic limitations
  1) Inherent noise amplification  2) Difficulty to invert H (too large or non-square)  3) All interesting inverse problems are ill-posed
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Part 1:  

Setting up
the problem 



 

10-Unser: Image processing

1.1 BASIC IMAGING OPERATORS

■ Fourier transform
■ Windowing
■ Convolution
■ Radon transform
■ Panorama of imaging modalities
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Forward imaging model (noise-free)

6

H : L2(Rd
) ! RM

s 2 L2(Rd) (space of finite-energy functions)

defined over a continuum in space-time

from continuum to discrete (finite dimensional)

(by the Riesz representation theorem)

impulse response of mth detector

Unknown molecular/anatomical map: s(r), r = (x, y, z, t) 2 Rd

Imaging operator H : s 7! y = (y1, · · · , yM ) = H{s}

) [y]m = ym = h⌘m, si =
Z

Rd

⌘m(r)s(r)dr

Linearity assumption: for all s1, s2 2 L2(Rd
), ↵1,↵2 2 R

H{↵1s1 + ↵2s2} = ↵1H{s1}+ ↵2H{s2}
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Basic operator: Fourier transform

7

f̂(!) = F{f}(!) =

Z

Rd

f(x)e�jh!,xidx

F : L2(Rd) ! L2(Rd)

Equivalent analysis functions: ⌘m(x) = ejh!m,xi (complex sinusoids)

Foolproof usage:

Reconstruction formula (inverse Fourier transform)

f(x) = F�1{f}(x) = 1

(2⇡)d

Z

Rd

f̂(!)ejh!,xid! (a.e.)

F : L1(Rd) ! C0(Rd)
M
=
�
f : Rd ! R continuous with kfkL1 < 1 and f(x) ! 0 as kxk ! +1
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Basic operator: Windowing

8

W : L2(Rd) ! L2(Rd)

Application: Structured illumination microscopy (SIM)

W{f}(x) = w(x)f(x)

Positive window function (continuous and bounded): w 2 Cb(Rd), w(x) � 0

Special case: modulation

w(r) = ejh!0,ri

ejh!0,rif(r)
F ! f̂(! � !0)
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Magnetic resonance imaging

9

x
z ω0 = ω0(x)

Frequency encode:

(sampling of Fourier transform)ŝ(!m) =

Z

R3

s(r)e�jh!m,ridr

ŝw(!m) =

Z

R3

w(r)s(r)e�jh!m,ridr

r = (x, y, z)

Magnetic resonance: !0 = �B0

Linear forward model for MRI

Extended forward model with coil sensitivity

10-

Basic operator: Convolution

10

H : L2(Rd
) ! L2(Rd

)

Convolution as a frequency-domain product

(h ⇤ f)(x) F ! ĥ(!)f̂(!)

Frequency response: ĥ(!) = F{h}(!)

H{f}(x) = (h ⇤ f)(x) =
Z

Rd

h(x� y)f(y)dy

Equivalent analysis functions: ⌘m(x) = h(xm � ·)

Impulse response: h(x) = H{�}

with ĥ 2 L1(Rd)
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Basic operator: X-ray transform

11

10.3 MAP reconstruction of biomedical images 273
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Figure 10.5 X-ray tomography and the Radon transform. (a) Imaging geometry. (b) 2-D
reconstruction of a tomogram. (c) Its Radon transform (sinogram).

In practice, the measurements correspond to the sampled values of the Radon
transform of the absorption map s(x) at a series of points (tm ,µm),m = 1, . . . , M . From
(10.32), we deduce that the analysis functions are

¥m(x) = ±
°
tm °hx ,µmi

¢

which represent a series of idealized lines inR2 perpendicular toµm = (cosµm , sinµm).

Discretization

For discretization purpose, we represent the absorption distribution as the weighted
sum of separable B-spline-like basis functions

s(x) =
X

k

s[k]Ø(x °k) ,

with Ø(x) = Ø(x)Ø(y) where Ø(x) is a suitable symmetric kernel (typically, a polyno-
mial B-spline of degree n). The constraint here is thatØ ought to have a short support
to reduce computations, which rules out the use of the sinc basis.

In order to determine the system matrix, we need to compute the Radon transform
of the basis functions. The properties of the Radon transform that are helpful for that
purpose are

x

y

θ

r

R ✓
{s}

(t)

=

Z

R2

s(x)�(t� hx,✓i)dx

Projection geometry: x = t✓ + r✓? with ✓ = (cos ✓, sin ✓)

Radon transform (line integrals)

R✓{s(x)}(t) =
Z

R
s(t✓ + r✓?)dr

sinogram

Equivalent analysis functions: ⌘m(x) = �
�
tm � hx,✓mi

�
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2D or 3D tomography coherent x-ray yi = R✓ix
parallel,  

cone beam, spiral sampling

Modality Radiation Forward model Variations

Cardiac MRI
(parallel, non-uniform)

gated or not,  
retrospective registrationradio frequency

yt,i = FtWix

Wi: coil sensitivity

Magnetic resonance
 imaging (MRI) radio frequency y = Fx uniform or non-uniform  

sampling in k space

Optical diffraction  
 tomography coherent light

with holography
or grating interferometryyi = WiFix

structured illumination 
microscopy (SIM)

fluorescence
yi = HWix

H: PSF of microscope
Wi: illumination pattern

full 3D reconstruction,  
non-sinusoidal patterns

3D deconvolution 
microscopy fluorescence brightfield, confocal, 

light sheety = Hx

Positron Emission 
Tomography (PET)

yi = H✓ixgamma rays list mode  
with time-of-flight



 

10-Unser: Image processing

1.2 DISCRETIZATION

■ Discretization: Finite dimensional formalism
■ Exemples
■ Diffraction-limited convolution (Fluorescence microscopy)
■ MRI

■ Appendix A: Magnetic Resonance Imaging

13
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Discretization: Finite dimensional formalism

14

Signal vector: s =
�
s[k]

�
k2⌦

of dimension K

s(r) =
X

k2⌦

s[k]�k(r)

System matrix : H 2 RM⇥K with [H]m,k = h⌘m,�ki =
Z

Rd

⌘m(r)�k(r)dr

y = Hs+ n

Selection of appropriate basis functions: �k : Rd ! R with k 2 ⌦ ⇢ Zd and Card(⌦) = K

Measurement model (image formation)

ym =

∫

Rd

ωm(r)s(r)dr + n[m] = →ωm, s↑+ n[m], (m = 1, . . . ,M)

ωm: sampling/imaging function (mth detector)

n[·]: additive noise
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Example of basis functions

15

Bandlimited representation

�(x) = sinc(x)
-4 -2 0 2 4

-0.2

0.2
0.4
0.6
0.8
1

tri(x) = β1(x)

!2 !1 0 1 2 3
!0.2

0.2
0.4
0.6
0.8
1Pixelated model

�(x) = rect(x)

Bilinear model

�(x) = (rect ⇤ rect)(x) = tri(x)

Shift-invariant representation: �k(x) = �(x� k)

Separable generator: �(x) =
dY

n=1

�(xn)
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Example 1: Diffraction-limited convolution

16

Discretization

!0  ⇡ and representation in (separable) sinc basis {sinc(x� k)}k2Z2

Analysis functions: ⌘m(x, y) = h2D(x�m1, y �m2)

[H]m,k = h⌘m, sinc(·� k)i

= hh2D(·�m), sinc(·� k)i

=
�
sinc ⇤ h2D

�
(m� k) = h2D(m� k).

Matrix-free implementation using the FFT

The discretized forward model s 7! Hs is implemented efficiently using the FFT

H: convolution matrix diagonalized by discrete Fourier transform

Hypothesis: F{h2D}(!) = ĥ2D(!) = 0 for k!k � !0 (Diffraction-limited optical transfer function)
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Diffraction-limited 2D model of a fluorescence microscope

17

g(x, y) = (h2D ⇤ s)(x, y)s(x, y)

Thin specimen

Modulation transfer function

ĥ2D(!) =

8
><

>:

2
⇡

 
arccos

⇣
k!k
!0

⌘
� k!k

!0

r
1�

⇣
k!k
!0

⌘2
!
, for 0  k!k < !0

0, otherwise

Airy disk: h2D(x, y) = I0
���2J1(r/r0)

r/r0

���
2

with r =
p

x2 + y2, r0 = �f0
2⇡R0

, J1(r): first-order Bessel function.

Radial profile

Cut-off frequency (Rayleigh): !0 = 2R0
�f0

= ⇡
r0

⇡ 2NA
�
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Example 2: Magnetic resonance imaging (MRI)

18

Discretization in separable sinc basis

Property: HT
H is circulant (FFT-based implementation)

(sampling of Fourier transform)

[H]m,k = h⌘m, sinc(·� k)i

= he�jh!m,·i, sinc(·� k)i = e�jh!m,ki

Physical image formation model (noise-free)

ŝ(!m) =

Z

R2

s(x)e�jh!m,xidx

Equivalent analysis function: ⌘m(x) = e�jh!m,xi
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Example 3: Discretization of the Radon transform
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θp̂ θ
(ω

)

!1

!2

p̂✓(!) = \R✓{'}(!) = '̂(! cos ✓,! sin ✓)

Proposition: Consider the separable function '(x) = '1(x)'2(y). Then,

R✓{'(·� x0)}(t) = '✓(t� t0)

where t0 = hx0,✓i and

'✓(t) =
⇣

1
| cos ✓|'1

� ·
cos ✓

�
⇤ 1

| sin ✓|'2

� ·
sin ✓

�⌘
(t).

[H](i,j),n = R✓i{'(·� n)}t� j) = '✓i(tj � hn,✓ii)

Shift-invariant basis: s(x) =
X

n2⌦

s[n]'(x� n) with ⌦ ⇢ Z2

Fourier-slice theorem:
Z

R
R✓{'}(t)e�j!tdt = '̂(!)|!=!✓

10-
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Appendix A: Magnetic Resonance Imaging (MRI)

21

Paul C. Lauterbur Peter Mansfield

Nobel Prize in Chemistry 1991 

Richard R. Ernst (ETHZ)

Nobel Prize in Medecine 2003 

ω = γ ×B

spin resonance

spectroscopy

imaging

Exploits Lamor precession of nuclear spins:

10-

Physical principle of magnetic resonance

22

Nucleus

Precession

magnetic moment
 of a nucleus

Excitation

relaxation signal

Induced voltage

t

!B0

Example: B0 = 1.5 Tesla corresponds to f0 = !0
2⇡ ⇡ 64 MHz for Hydrogen nuclei

Spins as signature of the atomic structure

The nuclei of individual atoms are characterized by a spin and a magnetic moment:

they are equivalent to small magnets.

When exposed to a large external magnetic field ~B0, the nuclear spins tend to resonate and precess at the

Larmor frequency

!0 = �B0

�: gyromagnetic constant associated with a given nuclear type (e.g.
1
H ou

13
C)
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Magnetic Resonance Imaging (MRI)

23

“whole body” scanner (1.5 Tesla magnet)

Proton density

Controlled RF excitation

Signal induced by the spins of hydrogen nuclei (1H=proton) exclusively

The relaxation decay during acquisition is negligeable
! Elementary MNR responses are quasi-sinusoidal

One only considers a spin density p(x) along the x axis (1D imaging)

10-

Frequency encoding

24

x
z

ω0 = ω0(x)

Principe of frequency encoding

Signal due to a point source of density p0 at position x0:

s(t) = p0e
�j(Gxx0)t (pure sinusoid)

The position x0 is encoded in the frequency !(x0) = �Gxx0.

Signal due to a continuum of sources with density distribution p(x)

s(t) =

Z 1

�1
p(x)e�jx(Gxt)dx

Excitation via a bandlimited RF pulse: !0(x) 2 (!min,!max)

A gradient along x is applied during the measurement:

Bz = Bz(x) = B0 �
Gx

�
x

Measurements: the FID signal that is received back from the sample in the RF coil

The signal is demodulated with its central frequency being mapped to 0.

The spin density along x is recovered by inverse Fourier transform:

p(x) =
1

2⇡

Z +1

�1
s(t)|t=!/Gx

ej!xd!



10-

Beyond one dimensional MRI

25

ωmin − ωp ωmax − ωpωy

ωx

Three-dimensional localization

Localization in z.
A static magnetic field that is linear along z (gradient) is applied during the
excitation. In this way, the RF pulse only excites a slice perpendicular to z:
!(z0) 2 (!min,!max).

Localization in y by phase encoding.
A linear gradient in y is applied during a suitable time after the excitation but
before the acquisition. The process is iterated such as to sample the 2D Fourier
transform along the !y axis.

Localization in x by frequency encoding.
Measurement of the 2D Fourier transform of a slice along !x with !y = Const.

10-26

Part 2:  

Classical image   
reconstruction  

Discretized forward model: y=Hs+ n

Inverse problem: How to efficiently recover s from y ?



10-

Vector calculus

27

Useful identities

∂

∂v
(
aT v

)
=

∂

∂v
(
vT a

)
= a

∂

∂v
(
vT Av

)
=

(
A + AT

)
· v

∂

∂v
(
vT Av

)
= 2A · v if A is symmetric

Scalar cost function J(v) : RN ! R

Vector differentiation:
@J(v)

@v
=

2

664

@J/@v1
...

@J/@vN

3

775 = rJ(v) (gradient)

Necessary condition for an unconstrained optimum (minimum or maximum)

@J(v)

@v
= 0 (also sufficient if J(v) is convex in v)

10-

Formal least-squares solution

JLS(s,y) = ky �Hsk2 = kyk2 + s
T
H

T
H| {z }

A

s� 2yT
H| {z }

aT

s

@JLS(s,y)
@s = 2HT

Hs�2HT
y = 0 ) sLS = argmin

s
JLS(s,y) = (HT

H)�1
H

T
y

Backprojection (poor man’s solution): s ⇡ H
T
y

Basic reconstruction: least-squares solution

28

+Imaging
system

noise         

LS algorithm

OK if H is unitary , H
�1 = H

T

y = Hs+ n

ỹ = Hs̃

s s̃

Least-squares fitting criterion: JLS(s̃,y) = ky �Hs̃k2

min
s̃

ky � ỹk2 = min
s

JLS(s,y) (maximum consistency with the data)

System matrix: H 2 RM⇥N
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Data fit and maximum-likelihood estimation

29

Using the knowledge of the noise distribution

Hypothesis: independent, zero-mean measurement noise with known PDF p(n)

Measurement equation , y �Hs = n

Expected measurement: E{y} = Hs (detector-wise)

Conditional probability density: p(y|s) =
MY

m=1

p(nm)

Maximum-likelihood estimation (ML)

JML(s,y) = log
�
p(y|s)

�
=

MX

m=1

log (p(nm)) = �Jdata(s,y)

Maximization of the ML criterion yields the most “likely” solution

Special case: Gaussian white noise

p(y|s) = p(n) =
M∏

m=1

1

ω
→
2ε

exp

(
↑ (ym ↑ [Hs]m)2

2ω2

)

↓ JML(s,y) = ↑
M∑

m=1

(
(ym ↑ [Hs]m)2

2ω2
↑ 1

2
log(2εω2)

)
↔ ↑JLS(s,y) + Const

10-

Making use of regularization

30

Many possible choices of regularization

Quadratic or Tikhonov: Jreg(s) = kLsk2

where L is a suitable differential operator (e.g., Laplacian) that penalizes oscillations

Maximum a posteriori or MAP (using Bayes rule):
JMAP(s) / � log(p(s)) (prior probability density)

Total variation: JTV(s) = krsk1 (favors piecewise-constant solutions)

General non-linear: Jreg(s) =
PN

n=1 �([Ls]n) where �(·) is a symmetric increasing function

Wavelet regularization: Jreg(s) = kWTsk`1
where W is a suitable wavelet transform (favors “sparse" solutions)

9
>>>=

>>>;
see Part III

From a global perspective, ML deconvolution is ill-posed. It is better to constrain the
solution by imposing explicit regularization constraints:

J(s,y) = Jdata(s,y) + ω · Jreg(s)

ω → 0: regularization factor (adjustable)
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Formal linear solution: s = (HT
H+ �LT

L)�1
H

T
y = R� · y

Linear inverse problems (20th century theory)

31

Equivalent variational problem

s
? = argmin ky �Hsk22| {z }

data consistency

+ �kLsk22| {z }
regularization

Interpretation: “filtered” backprojection

R(s) = kLsk22: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

Formal linear solution: s = (HT
H+ �LT

L)�1
H

T
y = R� · y

Andrey N. Tikhonov (1906-1993)

min
s

R(s) subject to ky �Hsk22  �2

Dealing with ill-posed problems: Tikhonov regularization

10-

Iterative reconstruction algorithm

32

Generic minimization problem: sopt = argmin
s

J(s,y)

Steepest-descent solution

s(k+1) = s(k) � �rJ
�
s(k),y

�

Conjugate gradient

More efficient, but requires lot of storage

Positivity constraint (IC): [̃s(k+1)]i =

(
0, [s(k+1)]i < 0

[s(k+1)]i, otherwise.
(projection on convex set)

Iterative constrained least-squares reconstruction

JTik(s,y) =
1
2ky �Hsk2 + �

2 kLsk
2

Gradient:
@JTik(s,y)

@s
= �s0 + (HT

H+ �LT
L)s with s0 = H

T
y

Steepest-descent algorithm

s
(k+1) = s

(k) + �
�
s0 � (HT

H+ �LT
L)̃s(k)

�
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Iterative deconvolution: unregularized case

33

Degraded image: 
Gaussian blur + additive noise

van Cittert animation

Ground truth

10-

Effect of regularization parameter

34

Degraded image: 
Gaussian blur + additive noise

not enough: λ=0.02 not enough: λ=0.2

too much: λ=20Optimal regularization: λ=2 too much: λ=200
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Designing fast reconstruction algorithms

35

Formal linear solution: s = (A+ �LT
L)�1

H
T
y = R� · y

Generic form of the iterator: s(k+1) = s(k) + �
�
s0 � (A+ �LTL)s(k)

�

Normal matrix: A = H
T
H (symmetric)

Recognizing structured matrices

L: convolution matrix ) LTL: symmetric convolution matrix

L, A: convolution matrices ) (A+ �LTL) : symmetric convolution matrix

 - deconvolution microscopy (Wiener filter)
 - parallel rays computer tomography (FBP)
 - MRI, including non-uniform sampling of k-space

Fast matrix-free implementation

Diagonalization of convolution matrices ) FFT-based implementation

Applicable to:

10-

Statistical formulation (20th century)

36

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

m L = C�1/2
s : Whitening filter

Quadratic regularization (Tikhonov)

Linear measurement model: y = Hs+ n

Norbert Wiener (1894-1964)

sTik = argmin
s

�
ky �Hsk22 + �R(s)

�
with R(s) = kLsk22

Linear solution : s = (HT
H+ �LT

L)�1
H

T
y = R� · y

n : additive white Gaussian noise (i. i. d.)

s : realization of Gaussian process with zero-mean
and covariance matrix E{s · sT } = Cs

u = Ls : standardized Gaussian innovation

� log pGauss(u) =
1
2kuk

2
2 +Const.sMAP = argmins

1
2�2 ky �Hsk22| {z }
Data Log likelihood

+ 1
2kC

�1/2
s sk22| {z }

Gaussian prior likelihood
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Appendix B: Convergence of iterative least squares

37

Basic Landweber/van Cittert iteration
s
(t+1) = s

(t) + �HT(y �Hs
(t))

=
�
I� �HT

H
�
s
(t) + �HT

y

) (s(t+1) � s
(t)) =

�
I� �HT

H
�
(s(t) � s

(t�1))

Spectral analysis

A and H
T
H are symmetric matrices that share the same eigenvectors un

(HT
H)un = ωnun → Aun = (1↑ εωn)︸ ︷︷ ︸

ωn

un

Condition for convergence

ω(A) = max
n

|εn| < 1 → 0 < ε <
2

ϑmax {HTH} (since ϑn ↑ 0 for all n)

Converges iff. A =
(
I→ ωHT

H
)

is a contraction map; i.e., ε(A) = max
→e→=1

↑Ae↑ < 1

10-38

Part 3:  

Sparsity-based image 
reconstruction
(2nd generation) 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Linear inverse problems: Sparsity

39

(Figuereido et al., Daubechies et al. 2004)

(Rudin-Osher, 1992)

(Candes-Romberg-Tao; Donoho, 2006)Compressed sensing/sampling

srec = argmin
s

�
ky �Hsk22 + �R(s)

�

Wavelet-domain regularization
v = W�1s: wavelet expansion of s (typically, sparse)
R(s) = kvk`1

Total variation
R(s) = kLsk`1 with L: gradient

(20th Century) p = 2 �! 1 (21st Century)

Non-quadratic regularization regularization

R(s) = kLsk2`2 �! kLskp`p �! kLsk`1

10-

Sparsifying transforms

40

0.1% 0.5% 1% 5% 10% 50% 100%
10-6

10-5

10-4

10-3

10-2

10-1

100

Percentage of coefficients kept

N
or

m
al

is
ed

 M
SE

 

 
Fourier
DCT
8x8 Block DCT
DWT (Haar)
DWT (spline2)
DWT (9/7)

Error maps

min=3, max=70 min=3, max=26 min=3, max=6

Biomedical images are well described by few basis coefficients

Prior =
sparse 

representation

Advantages:
• convex
• favors sparse solutions
• Fast: WFISTA

(Guerquin-Kern IEEE TMI 2011)

R(s) = �kWTsk1
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Theory of compressed sensing

41

[Donoho et al., 2005; Candès-Tao, 2006, ...]

y A x

+    “noise”

Generalized sampling setting (after discretization)

Linear inverse problem: y = Hs+ n

Sparse representation of signal: s = Wx with kxk0 = K0 ⌧ K

M ⇥N system matrix : A = HW

Formulation of ill-posed recovery problem when 2K0 < M ⌧ K

(P0) min
x2RK

ky �Axk22 subject to kxk0  K0

Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique and the recovery
problem (P0) is equivalent to:

(P1) min
x2RK

ky �Axk22 subject to kxk1  C0

10-

Geometry of l2  vs. l1 minimization

42

Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x
kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x
kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C
y1 = hT

1 x

y

2�
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Geometry of l2  vs. l1 minimization

43

Prototypical inverse problem

min
x

�
ky �Hxk2`2 + � kxk2`2

 
, min

x
kxk`2 subject to ky �Hxk2`2  �2

min
x

�
ky �Hxk2`2 + � kxk`1

 
, min

x
kxk`1 subject to ky �Hxk2`2  �2

x2

x1

`2-ball: |x1|2 + |x2|2 = C2

`1-ball: |x1|+ |x2| = C1

C y1 = hT
1 x

sparse extreme points

Configuration for non-unique `1 solution

10-

Elements of convex analysis

44

�
x1, f(x1)

�

�
x2, f(x2)

�

Definitions
Extended real line: R = R [ {+1}. A function f : Rd ! R is said to be:

(i) proper if there exists at least one x0 such that f(x0) < +1 (by default).

(iii) lower semi-continuous (l.s.c.) at a point x0 if, for every y < f(x0), there exists an ✏ > 0

such that y < f(x) for every x 2 B✏(x0) = {x 2 Rd : kx� x0k2 < ✏}.

(iv) convex if, for all � 2 (0, 1) and all x1,x2 2 Rd such that x1 6= x2,

f
�
�x1 + (1� �)x2

�
 �f(x1) + (1� �)f(x2).

(v) strictly convex if f
�
�x1 + (1� �)x2

�
< �f(x1) + (1� �)f(x2).

(ii) + (iii) on Rd ) f(x) is bounded from below and it reaches its infimum = existence of a minimizer

(ii) + (iii) + (v) ) f(x) admits a unique minimizer over Rd(iv) ) any local minimum is also global

(ii) coercive if f(x) ! +1 as kxk ! +1.
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Examples of convex functions

45

Sum of (weighted) convex functions

Let f1, f2 2 �0(Rd). Then, ↵1f1 + ↵2f2 2 �0(Rd) for any ↵1,↵2 2 R+.

Example: fp(x) = kxkpp =
dX

i=1

 p(xi) 2 �0(Rd). kxkpp is strictly convex for p > 1.

Indicator functions

Let C ✓ Rd be a closed convex subset of Rd. Then, the barrier function

iC(x) =

8
<

:
0, if x 2 C

+1, otherwise
is l.s.c. and convex.

Set of admissible functions: �0(Rd) =
�
f : Rd ! R s.t. f proper, convex and l.s.c. on Rd

 

Univariate functions

If f is differentiable: f is convex , f 0(x) = df(x)
dx is non-decreasing

If f is twice differentiable: f is convex , f 00(x) = d2f(x)
dx2 � 0

-2 -1 0 1 2

0.5

1.0

1.5

2.0

Example:  p(x) = |x|p is continuous (and a fortiori l.s.c.) convex for p � 1.
It is strictly convex for p > 1.

10-

Proximity operator

46

(Moreau 1962)

Set of admissible functions: �0(Rd) =
�
f : Rd ! R s.t. f proper, convex and l.s.c. on Rd

 

Properties

Both x 7! proxf (x) and x 7! x� proxf (x) are firmly non-expansive.

The fixed point of xt+1 = proxf (x
t) is the minimizer of f(x)

Definition

The proximity operator of f 2 �0(Rd) is the (multivariate) function proxf : Rd ! Rd defined by

proxf (x)
M
= arg min

z2Rd

1
2kx� zk2 + f(z).

NB: If f 2 �0(Rd), then the minimizer is guaranteed to exist and to be unique.

Projection on a convex set

Let iC be the barrier function associated with the closed convex subset C ⇢ Rd. Then,

proxiC (x) = argminz2C kx� zk2 = ProjC(x)
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Proximity operator of -potential∥ ⋅ ∥ℓ1

47

g(x, z) = 1
2 (z � x)2 + �|z|

Optimum at z̃ with
@
@z g(x, z̃) = (z̃ � x) + � sign(z̃) = 0

) x = z̃ + � sign(z̃) = f̃(z̃)

Let � : RN ! R be a separable additive potential with �(x) =
NX

n=1

�n(xn) where �n 2 �0(R).

�

x = f̃(z̃)

z̃

Special case: �(x) = �kxk1 with parameter � 2 R+ and �n(x) = �|x|.

Then, � 2 �0(RN ) (i.e., convex l.s.c.) and

prox�(x) =

0

BB@

prox�1
(x1)

...
prox�N

(xN )

1

CCA (layer of pointwise nonlinearities)

where prox�n
(x) = argmin

z2R

�
1
2 (x� z)2 + �n(z)

�
.

�

z̃ = prox�|·|(x)

x

) z̃ = prox�n
(x) = f̃�1(x) =

8
>><

>>:

x� �, x > �

0, x 2 [��,�]

x+ �, x < ��

(soft-threshold)

10-

Image reconstruction under sparsity constraints 

48

p = 1

Linear step (consistency with imaging physics)

Proximal step (regularization = prior constraints) 

(1)

“denoising” of current estimate z

ssparse = argmin
s

⇣
1
2ky �Hsk22 + g(s)

⌘
with g(s) = �kLsk`1 (regularization)

Solution by forward-backward splitting (Combettes-Wajs, 2005)

Convex optimization problem with non-smooth regularization

Proximal operator: proxg
�
z
�
= argmin

s

�
1
2kz� sk22 + g(s)

�

Repeat

until stop criterion

Interpretation: Same as (1) with H = I )

s(n) = prox�g
�
z(n)

�

Guarantee of convergence: �  2
�max(HTH)

z
(n) = s

(n�1) + �
⇣
H

T
y �H

T
Hs

(n�1)
⌘
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Efficient proximal denoising: wavelet-domain soft thresholding

49

�

Fast Wavelet
Transform

Inverse Wavelet
Transform

z̃z

 (Figueiredo-Nowak 2003)Iterative Soft-Thresholding Algorithm (ISTA)

Proximal step: z̃ = proxg
�
z
�
= argmin

s

�
1
2kz� sk22 + �kWTsk`1

�

Regularization: Promote sparsity in an orthogonal wavelet basis

g(s) = �kWTsk`1 with WTW = I (Orthonormality)

L � �max(H
T
H): Lipschitz constant of data termRepeat

until stop criterion

s(n) = WaveletThreshold
�
z(n);�/L

�
z
(n) = s

(n�1) +
1

L

⇣
H

T
y �H

T
Hs

(n�1)
⌘
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Deconvolution of fluorescence micrographs

50

Physical model of a diffraction-limited microscope

g(x, y, z) = (h3D ⇤ s)(x, y, z)

3-D point spread function (PSF)

h3D(x, y, z) = I0
��p�

�
x
M , y

M , z
M2

���2

p�(x, y, z) =

Z

R2

P (!1,!2) exp

✓
j2⇡z

!2
1 + !2

2

2�f2
0

◆
exp

✓
�j2⇡

x!1 + y!2

�f0

◆
d!1d!2

Optical parameters

�: wavelength (emission)

M : magnification factor

f0: focal length

P (!1,!2) = k!k<R0
: pupil function

NA = n sin ✓ = R0/f0: numerical aperture
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3D deconvolution of widefield stack

51
(Vonesch-U., IEEE TIP 2009)

Maximum intensity projections of 384⇥448⇥260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63⇥ oil-immersion objective;

C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

wavelet regularization (Haar), 3 decomposition levels for X-Y, 2 decomposition levels for Z.

10-

Extended penalized least-squares formulation

52

) Maximum a posteriori (MAP) estimator is given by (1) with � = �2.

(Beck-Teboule 2009)

(Condat-Vu 2013)

(Ramani-Fessler 2010)

Variants of ISTA
Inclusion of an inner loop for the iterative evaluation of proxJreg

(x).

Acceleration via the use of momentum: FISTA = Fast ISTA

Alternating direction method of multipliers (ADMM) involving an auxiliary variable u = Lx

! alternation between some gradient-like updates and a separable prox� on u

Incorporation of positivity constraints (barrier functional); splitting, primal-dual formulation

- System matrix: H 2 RM⇥K - Regularization operator: L 2 RN⇥K (not necessarily invertible)

(1) s� = arg min
s2RK

 
1
2ky �Hsk22 + �

NX

n=1

�
�
[Ls]n

�
!

- (Weakly-)convex potential � : R ! R (e.g., �(x) = |x|p)

Bayesian interpretation: MAP estimator

i.i.d. Gaussian measurement noise: n = y � s ⇠ N (0,�2I) = 1
(
p
2⇡�)M

exp
�
� 1

2�2 knk2
�

Statistical signal model (prior): p(s) = exp
⇣
� 1

2

PN
n=1 �([Ls]n

⌘
(Gibbs distribution)
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2D deconvolution experiment

Astrocytes cells Bovine pulmonary artery cells Human embryonic stem cells

Tikhonov l1 prior (TV) relaxed l0 prior
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.9 19.04 18.34
Stem cells 15.81 20.19 20.5

Deconvolution results (SNR in dB)

53

Disk-shaped PSF (7⇥ 7), L: gradient (TV-like), optimized parameters

<latexit sha1_base64="IX7lTnKTj7O66RYzd5uZujN9Qzk="></latexit>
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Original Phantom
(Guerquin-Kern TMI 2012)

 prior (Tikhonov)
SER =17.69 dB

ℓ2

 prior (TV)
SER = 21.37 dB

ℓ1 Relaxed  prior
SER = 27.22 dB

ℓ0

L : gradient

Optimized parameters

MRI phantom: Spiral sampling in k-space

54
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ISMRM reconstruction challenge

55

!1 wavelet regularizationL2 regularization (Laplacian)

(Guerquin-Kern IEEE TMI 2011)

10-

Differential phase-contrast tomography

56

Mathematical model

x 1
x2

✓
✓

In
te
n
si
ty

X-
ra
y	
So

ur
ce
	

phase	grating absorption	grating

int
erf

ere
nc

e p
att

ern

4xg(y, ✓)

xg

CCD

(Pfeiffer, Nature 2006)

Paul Scherrer Institute (PSI), Villigen

[H](i,j),k =
@

@t
P✓j�k(tj)

y(t, ✓) =
@

@t
R✓{s}(t)

y = H s
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Reducing the numbers of views

57

Rat brain reconstruction with 181 projections

ADMM-PCG g-FBP

SSIM = .96 

SSIM = .95 

SSIM = .89 

SSIM = .49 

SSIM = .51 

SSIM = .60 

SSIM = .43 

SSIM = .15 

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI / ETHZ

(Nichian et al. Optics Express  2013)
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Performance evaluation

58

361 181 91 46 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of directions

SS
IM

 

 

ADMMïPCG

FBP

361 181 91 46 23

1

10

20

30

Number of directions

SN
R

 (d
B

)

 

 

ADMMïPCG

FBP

(a) (b)

⇒  Reduction of acquisition time by a factor 10 (or more) ?

Goldstandard: high-quality iterative reconstruction with 721 views
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Compressed sensing: Applications in imaging

59

- Magnetic resonance imaging (MRI) 

- Radio Interferometry

(Lustig, Mag. Res. Im. 2007)

- Teraherz Imaging

(Wiaux, Notic. R. Astro. 2007)

(Chan, Appl. Phys. 2008)

- Digital holography (Brady, Opt. Express 2009; Marim 2010)

- Spectral-domain OCT (Liu, Opt. Express 2010) 

- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014) 

- Localization microscopy (Zhu, Nat. Meth. 2012) 

- Ultrafast photography (Gao, Nature 2014) 

10-60

Part 4:  

The (deep) learning revolution
⇒ Rise of data-driven methods 
 
 

■ First generation of deep CNN-based methods for image reconstruction
■ Iterative reconstruction using stable—and not so deep—CNNs
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Appearance of Deep ConvNets

61

CT reconstruction based on Deep ConvNets

Input: Sparse view FBP reconstruction

Training: Set of 500 high-quality full-view CT reconstructions

Architecture: U-Net with skip connection

(Jin et al., IEEE TIP 2017)

(Jin et al. 2016; Adler-Öktem 2017; Chen et al. 2017; ... )

Dose reduction by 7: 143 views

 Reconstructed from
from 1000 views

CT data  

TV (CS)



Dose reduction by 7: 143 views

(Jin et al, IEEE Trans. Im Proc., 2017)
 Reconstructed from

from 1000 views

CT data  

2019 Best Paper Award

TV (CS)

Dose reduction by 20: 50 views

 Reconstructed from
from 1000 views

CT data  

(Jin et al., IEEE Trans. Im Proc., 2017)

TV (CS)
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Deep CNNs for bioimage reconstruction images 

65

- Magnetic resonance imaging (MRI) 

(Jin…Unser, IEEE TIP 2017)

- Dynamic MRI (cardial imaging)

(Hammernik…Pock, Mag Res Med 2018 )

(Schlemper…Rueckert, IEEE TMI 2018)

- 2D microscopy (Rivenson…Ozcan, Optica 2017)

- Diffraction tomography

- Super-resolution microscopy (Nehme…Shechtman, Optica 2018) 

- 3D fluorescence microscocopy

(Sun…Kamilov, Optics Express 2018) 

- Ultrasound (Yoon…Ye, IEEE TMI 2019) 

- X-ray tomography 

(Tezcan…Konukoglu, IEEE TMI 2018 )

(Chen…Wang, Biomed Opt. Exp 2017)

(Hauptmann…Arridge, Mag Res Med 2019)

(Weigert…Jug, Myers, Nature Meth. 2018)
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But CNN-based methods also have their weaknesses

66

■ They require lots of training data
■ Medical imaging: limited access to patient data
■ Lack of gold standards (except for compressed sensing scenarios)
■ Training for (3D) medical imaging is extremely computer intensive

■ They are hard to tune
■ Many design parameters: depth, width, number of channels
■ Use of ad hoc modules: batch normalization

■ They lack robustness
■ Adversarial attacks
■ Unpredictable results On instabilities of deep learning in image

reconstruction and the potential costs of AI

Vegard Antuna, Francesco Rennab, Clarice Poonc, Ben Adcockd, and Anders C. Hansena,e,1

aDepartment of Mathematics, University of Oslo, 0316 Oslo, Norway; b Instituto de Telecomunicações, Faculdade de Ciências, Universidade do Porto, Porto

4169-007, Portugal; cDepartment of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom; dDepartment of Mathematics, Simon Fraser

University, Burnaby, BC V5A 1S6, Canada; and eDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3

0WA, United Kingdom

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved March 12, 2020 (received for review June 4, 2019)

Deep learning, due to its unprecedented success in tasks such as

image classification, has emerged as a new tool in image recon-

struction with potential to change the field. In this paper, we

demonstrate a crucial phenomenon: Deep learning typically yields

unstable methods for image reconstruction. The instabilities usu-

ally occur in several forms: 1) Certain tiny, almost undetectable

perturbations, both in the image and sampling domain, may

result in severe artefacts in the reconstruction; 2) a small struc-

tural change, for example, a tumor, may not be captured in the

reconstructed image; and 3) (a counterintuitive type of instability)

more samples may yield poorer performance. Our stability test

with algorithms and easy-to-use software detects the instability

phenomena. The test is aimed at researchers, to test their net-

works for instabilities, and for government agencies, such as the

Food and Drug Administration (FDA), to secure safe use of deep

learning methods.

instability | deep learning | AI | image reconstruction | inverse problems

There are two paradigm changes currently happening: 1)

Artificial intelligence (AI) is replacing humans in problem

solving; however, 2) AI is also replacing the standard algo-

rithms in computational science and engineering. Since reliable

numerical calculations are paramount, algorithms for compu-

tational science are traditionally based on two pillars: accuracy

and stability. This is, in particular, true of image reconstruction,

which is a mainstay of computational science, providing funda-

mental tools in medical, scientific, and industrial imaging. This

paper demonstrates that the stability pillar is typically absent

in current deep learning and AI-based algorithms for image

reconstruction. This raises two fundamental questions: How reli-

able are such algorithms when applied in the sciences, and do

AI-based algorithms have an unavoidable Achilles heel: instabil-

ity? This paper introduces a comprehensive testing framework

designed to demonstrate, investigate, and, ultimately, answer

these foundational questions.

The importance of stable and accurate methods for image

reconstruction for inverse problems is hard to overestimate.

These techniques form the foundation for essential tools across

the physical and life sciences such as MRI, computerized tomog-

raphy (CT), fluorescence microscopy, electron tomography,

NMR, radio interferometry, lensless cameras, etc. Moreover, sta-

bility is traditionally considered a necessity in order to secure

reliable and trustworthy methods used in, for example, cancer

diagnosis. Hence, there is an extensive literature on designing

stable methods for image reconstruction in inverse problems

(1–4).
AI techniques such as deep learning and neural networks (5)

have provided a new paradigm with new techniques in inverse

problems (6–15) that may change the field. In particular, the

reconstruction algorithms learn how to best do the reconstruction

based on training from previous data, and, through this train-

ing procedure, aim to optimize the quality of the reconstruction.

This is a radical change from the current state of the art (SoA)

from an engineering, physical, and mathematical point of view.

AI and deep learning have already changed the field of com-

puter vision and image classification (16–19), where the perfor-

mance is now referred to as super human (20). However, the

success comes with a price. Indeed, the methods are highly unsta-

ble. It is now well established (21–25) that high-performance

deep learning methods for image classification are subject to fail-

ure given tiny, almost invisible perturbation of the image. An

image of a cat may be classified correctly; however, a tiny change,

invisible to the human eye, may cause the algorithm to change its

classification label from cat to fire truck, or another label far from

the original.
In this paper, we establish the instability phenomenon of

deep learning in image reconstruction for inverse problems. A

potential surprising conclusion is that the phenomenon may be

independent of the underlying mathematical model. For exam-

ple, MRI is based on sampling the Fourier transform, whereas

CT is based on sampling the Radon transform. These are rather

different models, yet the instability phenomena happen for both

sampling modalities when using deep learning.

There is, however, a big difference between the instabilities of

deep learning for image classification and our results on insta-

bilities of deep learning for image reconstruction. Firstly, in the

former case, there is only one thing that could go wrong: A small

perturbation results in a wrong classification. In image recon-

struction, there are several potential forms of instabilities. In

particular, we consider three crucial issues: 1) instabilities with

respect to certain tiny perturbations, 2) instabilities with respect

to small structural changes (for example a brain image with

or without a small tumor), and 3) instabilities with respect to

changes in the number of samples. Secondly, the two problems

are totally unrelated. Indeed, the former problem is, in its sim-

plest form, a decision problem, and hence the decision function

(“Is there a cat in the image?”) to be approximated is necessarily
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Sciences, ”The Science of Deep Learning,” held March 13–14, 2019, at the National
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Dangers of image-domain learning: Result
J. Fessler
Joint Opt

11 / 49

G. Nataraj and R. Otazo. “Investigating robustness to unseen pathologies in model-free deep multicoil reconstruction.”  
ISMRM 2020 Workshop on Data Sampling & Image Reconstruction 

(TV)

(variant of FBPConvNet)

10-

PnP-FBS variant of Iterative Image Reconstruction

68

Repeat

until stop criterion

Linear step (consistency with imaging physics)

Proximal or “denoising” step (regularization) 
Niter

Schematic structure of iterative reconstruction algorithm :

(Bauschke-Combettes 2017, Hertrich et al. 2021)Requirement for convergence: kf✓kLip  1 (Non-expansive operator)
<latexit sha1_base64="kfEE9Hqjh11ZWEovblOKWXe4MSM="></latexit>

Proximal operator: proxg
�
z
�
= argmin

x

�
1
2kz� xk2 + g(x)

�

x̂ = argmin
x

⇣
1
2ky �Hxk2 + g(x)

⌘

z
(n) = x

(n�1) + ↵
⇣
H

T
y �H

T
Hx

(n�1)
⌘

x
(n) = prox↵g

�
z
(n)

�

(Venkatakrishnan-Bouman  2013)Plug-and-Play variant

Repeat

until stop criterion

Linear step (consistency with imaging physics)

Suitable nonlinear map (e.g., CNN)
Niter

z
(n) = x

(n�1) + ↵
⇣
H

T
y �H

T
Hx

(n�1)
⌘

x
(n) =

�
(1� �)Id + �f✓

��
z
(n)

�
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Deep neural network with stability control

69

layers

nodes

(n, `)

….….

neuron

(n� 1, `)

Linear step: RN`�1 ! RN`

f ` : x 7! f `(x) = W`x+ b`

Nonlinear step: RN` ! RN`

�` : x 7! �`(x) =
�
�(x1), . . . ,�(xN`)

�

zn,` = �
�
wT

n,`z`�1 + bn,`
�

Layers: ` = 1, . . . , L

Deep structure descriptor: (N0, N1, · · · , NL)

Neuron or node index: (n, `), n = 1, · · · , N`

Activation function: � : R ! R (ReLU)

Spectral normalization (Miyato ICLR 2018)

Controlling Lipschitz stability

kfdeepkLip = supx 6=x0
kfdeep(x)�fdeep(x

0)k
kx�x0k 

LY

`=1

k�`kLip| {z }
1

kW`kS1| {z }
=1

Learned

fdeep(x) = (�L � fL � �L�1 � · · · � �2 � f2 � �1 � f1) (x)

10-

Neural nets with free-form activations and stability 
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layers

nodes

(n, `)

….….

neuron

(n� 1, `)

zn,` = �n,`

�
wT

n,`z`�1 + bn,`
�

Linear step: RN`�1 ! RN`

f ` : x 7! f `(x) = W`x+ b`

Nonlinear step: RN` ! RN`

�` : x 7! �`(x) =
�
�n,`(x1), . . . ,�N`,`(xN`)

�

Joint learning / training
Stability control: kfdeepkLip 

LY

`=1

k�`kLip| {z }
1

kW`kS1| {z }
1

= 1

spectral normalization vs. Parseval frame        Lip-1 splines

fdeep(x) = (�L � fL � �L�1 � · · · � �2 � f2 � �1 � f1) (x)

Layers: ` = 1, . . . , L

Deep structure descriptor: (N0, N1, · · · , NL)

Neuron or node index: (n, `), n = 1, · · · , N`

Activation function �n,` : R ! R (free-form)
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Learning activation functions / pointwise 
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Infinite-dimensional optimization problem is that is inherently ill-posed

Search space: BV(2)(R) = {f : R ! R : kD2fkM < 1} ⇢ Lip(R)

Finding the “optimal” pointwise nonlinearity � : R ! R

Incorporating a regularization

Should not penalize simple solutions (e.g., identity or linear scaling)

Should impose diffentiability (for DNN to be trainable via backpropagation)

Should favor simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

) minimizing/constraining TV(2)(�)
M
= kD2�kM (Second-order total-variation)

Controlling stability: Lip(�)
M
= supx2R |D�(x)|  1

10-
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(Debarre JCAM 2022)

Solution with fewest knots

(smin, smax) = R (unconstrained)

TV(2) regularization with slope constraints

72

(new improved: for Stéphane Mallat’s birthday)

Generic loss functional E : R⇥ R ! R+ (strictly convex)

The sparsest spline solution is identifiable using a variant of Debarre’s algorithm.

(Aziznejad, IEEE OJSP 2022)

Theorem

The solution set of (TV2-SC) is a non-empty, weak*-compact subset of
BV(2)(R), and all its extreme points are adaptive piecewise-linear
splines with a most (M � 2) knots.

Slope parameters: smin < smax

(TV2-SC) S = arg min
f2BV(2)(R)

 
MX

m=1

E(f(xm), ym) + �TV(2)(f)

!
,

s.t. smin  f 0(x)  smax, 8x 2 R

Special cases of (smin, smax)

(�1, 1): Lipschitz-1 splines

(0, 1): firmly non-expansive = prox of a convex potential

(0,+1): monotone splines = derivative of a convex potential

(�⇢,+1) with 0 < ⇢ (small): weakly-monotone splines = derivative of a ⇢-weakly-convex potential
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Comparison of linear interpolators
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arg min
f2H1(R)

Z

R
|Df(x)|2dx s.t. f(xm) = ym, m = 1, . . . ,M

arg min
f2BV(2)(R)

kD2fkM s.t. f(xm) = ym, m = 1, . . . ,M

(U. JMLR 2019; Lemma 2)

(de Boor 1966)

M-norm = weak extension of L1 norm:

kfkM = sup
'2S(R): k'kL11

hf,'i

ym

10-

Representer theorem for stable, free-form deep neural 

74
(Unser, JMLR 2019)Precursor without stability:

) Lip(fdeep)  1

Theorem (Optimality of Lipschitz-1 deep spline networks)

neural network f : RN0 ! RNL with deep structure (N0, N1, . . . , NL)

x 7! fdeep(x) = (�L � fL � �L�1 � · · · � f2 � �1 � f1) (x)

linear transformations f ` : RN`�1 ! RN` ,x 7! W`x with W` 2 RN`⇥N`�1

free-form activations �` =
�
�1,`, . . . ,�N`,`

�
: RN` ! RN` with �1,`, . . . ,�N`,` 2 BV(2)(R)

Given a series data points (xm,ym) m = 1, . . . ,M , we then define the training problem

arg min
(W`),(�n,`2BV(2)(R))

 
MX

m=1

E
�
ym,fdeep(xm)

�
+�

LX

`=1

NX̀

n=1

TV(2)(�n,`)

!

s.t. Lip(�n,`), kW`kS1  1, (n = 1, . . . , N`, ` = 1, · · · , L) (1)

where E : RNL ⇥ RNL ! R+
is an arbitrary convex loss function.

The solution of (1) exists and is achieved by a deep spline network with activations of the form

�n,`(x) = b1,n,` + b2,n,`x+

Kn,`X

k=1

ak,n,` ReLU(x� ⌧k,n,`),

with adaptive parameters Kn,`  M � 2, ⌧1,n,`, . . . , ⌧Kn,`,n,` 2 R, and b1,n,`, b2,n,`, a1,n,`, . . . , aKn,`,n,` 2 R.

(Unser et al., ACHA 2025)
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Outcome of representer theorem: deep splines
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Link with `1 minimization techniques

TV(2)(�n,`) =

Kn,`X

k=1

|ak,n,`| = kan,`k1 and Lip(�n,`) = sup
K2{1,...,Kn,`}

�����

KX

k=1

ak,n,`

�����

Each neuron
�
fixed index (n, `)

�
is a piecewise-linear spline, characterized by

• its number 0  Kn,` of knots (ideally, much smaller than M );

• the location {⌧k = ⌧k,n,`}
Kn,`

k=1 of these knots (ReLU biases);

• the expansion coefficients bn,` = (b1,n,`, b2,n,`) 2 R2,
an,` = (a1,n,`, . . . , aK,n,`) 2 RK .

These parameters (including the number of knots) are data-dependent and adjusted
automatically during training.

10-

Implementation: Lip-1 spline CNN  (trained for 
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Learnable linear spline 
nonlinearities (pointwise) Convolutional layer

Knot spacing:    , Number of knots: T<latexit sha1_base64="N8VrSjfABxXwiCk2vNAin39w97s="></latexit> K<latexit sha1_base64="qj565FENCnpHg2TFZNwFoyNWURY="></latexit>

Linear B-spline basis

Compact support

Efficient forward & backward pass

Easy to compute Lipschitz constant
(max. absolute derivative)

(Bohra et al. IEEE Open JSP 2020)

�n,`(x)

(Ducotterd et al. JMLR 2024)

fdeep(x) = (�L � fL � �L�1 � · · · � �2 � f2 � �1 � f1) (x)

Constrain Lipschitz constant of each layer to be no greater than one

Convolutional layer: Lip-1 projector (spectral normalization vs. Parseval frame)

Linear spline layer: Lip-1 spline projector
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PnP image reconstruction: Experimental set-up

77

� � � �
1XPEHU�RI�OD\HUV

��

��

36
1

5
��G

%�

� � � �
1XPEHU�RI�OD\HUV

����

����

66
,0

5H/8�8
5H/8�/
'6�/

(Unconstrained ReLU)

C
on

vo
lu

tio
n

+
N

on
lin

ea
rit

y
<latexit sha1_base64="RXKlOhVW7svyIYHm85Y8rBjyhVw=">AAAKyXiclVZtb9s2EFbbvbTaW9p9274QSw0MXWtY7rZsAwp0SFskWLdlSZMWiYyAks42E+olJJXYIQQM2I/YP9jX7e/s3+woybJeksElIIO+e/jc8e54pJdwJtVg8O+Nm7feefe992/fsT/48KOPP1m7e+9AxqnwYd+PeSzeeFQCZxHsK6Y4vEkE0NDj8No73TT61+cgJIujV2qewCikk4iNmU8Vio7XPtuMo/OYp+Yf+Yr8EkeGiQqm5sdr64P+IB+kO3HKybpVjp3ju3f+dIPYT0OIlM+plEfOIFEjTYViPofMdlMJCfVP6QR07npGeigKyDgW+EWK5NIGjoZSzkMPkSFVU9nWGeGVOiMRciybVj0vzOy65ChV4+9GmkVJqiDyC4fGKScqJiZeJGACfMXnhPo+7iulCv1tMLxyRto4b5Y3FNKnHIIn/e+HIz0Ffg4K9QIiuPDjMKRRoN0xDRmfBzCmKVeZduV4Mbd7do/k+ZMEocRLOQclf0C5ixhMUh4rHaaTmAeZFhMv087DQX/jm4eDrIMRMC8xgz4Cig9hdWc8nkJhBj1p+smphyWmIGSoKkgNOiOuSDloYxVmmb2YZC1mY3515tLdVblx+2/FbcK1IrfHMZVvExKE/x93k0FNQaaexPLCw5dpot2pxNqBB/rRoP8tLmlGGmudc3LfLrySZykVcH+5ZGhskOuMXGtnY2mnirti0fx6Q48XhupmCgPZEZ4Fd2nsgb6qWhwkyH9KThOiPELEHACy7lxN37KwqpG6lTwRlZF2stnEpNNYINrkV2DDWMF9E8XSfWLnvKRJnJh2uiRewVd01aQTCfNg5L1gLwGfUU5MN4x50QjqVli0m5lf4prW53l6t71BFh02EYdtxCZWx0K52Vbu1pQd7sOaskO7xbgHQi0g2Bb1VhsDZ9ixTG4U1pwArt1zvDcEo9EErw79JDN9u77gZZxkGE0RkpdtrmeV6llbtV2pttuqgEWq1AUday/wwmUg6lt40Um0d2nWY3aCIknkslNjsxZCdBAXLYQbhzChHYe80xbutNu8WgjeIZnhhpURYuzdg3WngddFLS9Gj5zjecPrqEDvJX6OX0SjBPdIXsAl6OeCcrzUIlywSv9rUnGIcAmKExBUmYeAAQFUCMhDboQnJ5XwpBJuRwHzdVmGoXYqxY6IvUIufaF3suJ+xKTicveCBTClSueoasnzWVKsiJMFo36OBzSKOQuZwneF3XuUD7IHCjvmhGCrJQle/ESySyCg/D4O25WAr7JooqbYjGGm0Bw+WbTztY9PkbrStIkoAFOEg1zXbOSLV55UAqkNQ3/YyriiXlbr7qbfIRHuCJ9yTvvh1p0cDPvO4/7wt+H60x/LR91t63PrC+tLy7E2rKfWlrVj7Vu+9bv1l/W39Y/9k31mz+zLAnrzRrnmU6sx7D/+A9g779I=</latexit> C

on
vo

lu
tio

n
+

N
on

lin
ea

rit
y

<latexit sha1_base64="RXKlOhVW7svyIYHm85Y8rBjyhVw="></latexit> C
on

vo
lu

tio
n

+
N

on
lin

ea
rit

y
<latexit sha1_base64="RXKlOhVW7svyIYHm85Y8rBjyhVw="></latexit>

C
on

vo
lu

tio
n

<latexit sha1_base64="1A6jwpI2jb1lrYnmlARFUROJFjU="></latexit>

1
2

<latexit sha1_base64="lYzX3De+m5fyEe+juvxX0IYLZkU="></latexit>

· · ·<latexit sha1_base64="vU0lAhY/KaQ3zfCXcvJCgYy6iwE="></latexit>

Compressed sensing MRI

256⇥ 256 ground-truth images

Subsampling ratio = 0.3

Gaussian additive noise with � = 10/255

Number of layers of denoising CNN = 5

Deep-spline denoising Dn-CNN

Training of Gaussian denoiser

240K examples of 40⇥ 40 patches from BSD500 dataset

Additive Gaussian noise with � = 5/255

3⇥ 3 convolution kernels, 32 channels

Deep spline activations with T = 0.1, K = 51

Number of layers = 3, 5, 7, 9

Learned Lip-1 filters = Parseval CNN

10-

Results: Gaussian denoising with Parseval CNN

78

Drop in performance for constrained ReLU nets
DS-L performs better than ReLU-L even with fewer parameters
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Compressed Sensing MRI

79

Random sampling pattern

ReLU-LGround truth Zero-filled reconstruction

Ground truth Zero-filled reconstruction ReLU-L

Parseval DS-L

Parseval DS-L

WCRR-NN

WCRR-NN

<latexit sha1_base64="bU+nwD7mwLktuZ85uw0CiF5jzyQ="></latexit>

Subsampling mask Random Radial Cartesian
Image type Brain Bust Brain Bust Brain Bust
Zero-filling 23.72 25.88 22.99 23.92 21.34 23.03
ReLU-L 30.70 30.59 29.60 30.09 23.70 26.87
Parseval DS-L 33.19 33.88 31.68 33.15 24.97 28.68
WCRR-NN 34.73 35.31 33.22 34.49 25.53 29.50

10-

WCRR variant: Learnable Weakly-Convex Ridge 
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min
x2RN

 
1

2
ky �Hxk22 +

IchanX

i=1

h1,�i(Wix)i
!

Weakly-convex extension of FoE (Chen-Pock 2014) 

System matrix: H 2 RM⇥N

Learnable filters (CNN) : Wi 2 RN⇥N , i = 1, . . . , Ichan

Shared free-form potentials : �i(u) =
�
�i(u1), . . . ,�i(uN )

�
with �i(u) =

R u
�1 �i(x)dx

Iterative reconstruction

Recurrent neural network (steepest descent)

x
(n+1) = x

(n) � ↵

 
IchanX

i=1

W
T
i �i(Wix

(n)) +H
T
�
Hx

(n) � y
�
!

with �i = �
0
i

Training on denoising problem

Parametrization of the slope: �i = �0
i : R ! R

s.t. weak-monotonicity constraint and penalty on TV(2)(�i) (sparsity) ) linear splines

Deep equilibrium training of variational denoiser where the �i are expanded in a B-spline basis.

(Goujon, SIAM J. Im. Sci 2025)
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Table 4.1

PSNR and SSIM values for both reconstruction experiments.

Metric PSNR SSIM

Zero-fill 27.92 0.711
TV[5] 32.03 0.7922
CRR-NN [19] 33.14 0.842
WCRR-NN 34.55 0.858
Prox-DRUNet [23] 35.09 0.864

(a) MRI

Metric PSNR SSIM Param.

TV 31.57 0.852 1
ACR [37] 31.58 0.848 6 · 105
CRR-NN 32.87 0.862 5 · 103
AR [34] 33.62 0.875 2 · 107
WCRR-NN 34.06 0.895 2 · 104
Prox-DRUNet 34.20 0.901 2 · 107

(b) CT

Figure 4.1. Reconstructed images for the MRI experiment. The reported metrics are PSNR and SSIM.

in the other region of the k-space are uniformly sampled. Consequently, we end up with a
total number of b320/Maccc selected columns. Lastly, both the real and imaginary parts of
the measurements are corrupted by Gaussian noise with standard deviation �n = 10�4. For
validation and testing, we picked 10 and 99 images, respectively, all normalized within [0, 1].

Sparse-View CT. To provide a comparison with Adversarial Regularization (AR) [34] and
its convex counterpart ACR [37], we include the sparse-view CT experiment proposed in [37].
Its data consists of human abdominal CT scans for 10 patients, publicly available as part of
the low-dose CT Grand Challenge [36]. For validation, 6 images are taken uniformly from the
first patient of the training set used by [37]. To benchmark all methods, we use the same set
as [37], namely 128 slices with size (512⇥ 512) from a single patient. The CT measurements
are simulated using a parallel-beam acquisition geometry with 200 angles and 400 detectors.
These measurements are corrupted by Gaussian noise with standard deviation �n = 2.0.

4.2.1. Comparison and Discussion. The PSNR and SSIM values on the respective test
sets are reported together with the parameter numbers in Table 4.1. The hyperparameters of
each method are tuned to maximize the average PSNR over the validation sets with the coarse-

16

Img
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but, PSNR (or SSIM) is not the whole story

82
Figure 4.2. Reconstructions for the sparse-view CT experiment. The reported metrics are PSNR and SSIM.

to-fine method described in [19]. We observe that WCRR-NNs outperform the other energy-
based methods and are close to the PnP approach. For both problems, several reconstructions
are provided in Figures 4.1 and 4.2, respectively. Overall, the results illustrate the universality
and e�ciency of our method. In the following, we briefly comment on the competing methods
used in our evaluation.

Convex Models. The TV and CRR-NN reconstructions serve as references for convex meth-
ods. They are computed via the FISTA algorithm [5] with a nonnegativity constraint. Similar
to denoising, we observe that moving from convex to weakly convex regularization leads to
significant quality improvements. This is not surprising due to the interpretation as sparsity
prior and the thereby inherited universality. However, convex models are still better under-
stood from a theoretical perspective, and convergence to global optima can be guaranteed.
Hence, they might be favorable in certain settings.

Adversarial Regularization. Among the explicit regularization approaches mentioned in Sec-
tion 1, we provide a comparison with the convex ACR [37, 39] framework and its non-convex
counterpart AR [34]. Instead of a gradient-based parameterization, these models parameterize
the regularizer R directly and train it in an adversarial manner. The latter being specific to a
particular inverse problem, we can only provide a comparison for their CT experiment. While
both adversarial models have significantly more parameters than their respective (W)CRR-
NNs counterparts, they are not able to outperform them. We believe that the gradient-based
parameterization together with the specific architecture design is largely responsible for the
methods’ superiority in practice.

Plug and Play. Our approach bears some resemblance with PnP methods since R is learnt
on a generic denoising task. Hence, it is natural to compare WCRR-NNs with a deep CNN
version of this approach. Among the countless variations, the recently proposed framework
[23], which we refer to as Prox-DRUNet, is the closest to ours in terms of theoretical guar-
antees and existence of an underlying regularizer (see Section 3.4.1 for a discussion). We use

17

convex
handcrafted convex learned weakly convex

learned

Theoretical guarantees : convergence, consistency, stability

“state-of-the-art”
CNN
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Learned filters and nonlinearities
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Figure 3.2. Impulse response of the filters in the learnt WCRR-NN.

Figure 3.3. Profile function  and activation function ' =  0 of the learnt WCRR-NN. These functions
are splines of degrees 2 and 1, respectively. For better visualization, only half of the spline knots are shown.

12

Figure 3.2. Impulse response of the filters in the learnt WCRR-NN.

Figure 3.3. Profile function  and activation function ' =  0 of the learnt WCRR-NN. These functions
are splines of degrees 2 and 1, respectively. For better visualization, only half of the spline knots are shown.

12

Nonlinearities are shared up to a channel-wise scaling factor

80 channels

Un panorama d’ondelettes et une “spline” bien dimensionnée
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Conclusion: Current status of computational imaging
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Stability/trust vs. performance ?

Classical reconstruction algorithms

Are typically linear and have a fast implementation (e.g. filtered backprojection)

Can be derived from the minimization of a quadratic cost functional

Use regularization to deal with ill-posedness and to avoid amplification of noise

Are well understood and come with theoretical guarantees (stability, etc.)

2nd generation methods / compressed sensing

Derived from the minimization of a convex (sparsity-promoting) cost functional

Iterative reconstruction (Gradient-based or proximal)

Can handle more extreme scenarios (lower dose, less measurements)

Work in progress: The learning revolution

Amazing reconstruction results / state-of-the-art in current challenges

Still poorly understood, requires lots of training

Lack of robustness, tendency to hallucinate
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Conclusion: Cont’d

85

How the newer CNN-based methods profit from the older ones

CNN variant of “classical” PnP iterative reconstruction pipeline

Enforcing stability (Lip-1) to guarantee convergence

Producing reconstruction that are consistent with the measurements

Search for shallower architecture for faster training and inference

What benefits all approaches

Deep understanding of the imaging physics ) accurate forward model

Proper discretization via the use of appropriate basis functions

Fast, matrix-free implementation of forward model/normal matrix (whenever possible)
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