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Computational imaging = Image reconstruction

m Linear forward model y=Hs+n
noise
N
Integral operator n
S Problem: recover s from noisy measurements y

m The easy scenari

Hypotheses: H is wel B . . .
asic limitations

= s~ (H'H ;)) g‘.;‘f‘.” ent noise amplification
Itficulty to invert H (too large or non-square)

o 3) All i ey
m Backprojection ( ) All interesting inverse problems are ill-posed

Part 1:

Setting up
the problem




1.1 BASIC IMAGING OPERATORS

» Fourier transform

Windowing

Convolution

Radon transform

Panorama of imaging modalities

Unser: Image processing 10-5

Forward imaging model (noise-free)

Unknown molecular/anatomical map: s(r),r = (z,y, 2,t) € R¢

defined over a continuum in space-time

s € Ly(R%) (space of finite-energy functions)

Imaging operator H : s —y = (y1,- -+ ,ynm) = H{s}
from continuum to discrete (finite dimensional)

H: Lg(Rd) — ]RM

Linearity assumption: for all s1, so € La(R%), ap, s € R

H{a181 + 04282} = O[lH{Sl} + OéQH{SQ}

impulse response of mth detector
= ¥ == (8) = [ ()
R

(by the Riesz representation theorem)



Basic operator: Fourier transform
F: Ly(RY) — Ly(RY)

f(w) = F{fHew /f eIl

Reconstruction formula (inverse Fourier transform)

fle) = F Y}z (2m)1 / Flw)e®) dw (a.e)

Foolproof usage:

F: Li(RY) — Co(R?) = { £ : RY — R continuous with || f||1.. < coand f(z) — 0as ||lz|| — +oo}

Equivalent analysis functions: 7,,,(z) = e/{“=®)  (complex sinusoids)

Basic operator: Windowing
W : Ly(RY) — Ly(R?)
W{f}(z) = w(z)f(z)
Positive window function (continuous and bounded): w € Cy,(R%), w(x) > 0

m Special case: modulation
wo ,'l">

w(r) = el

dwor) pp) I flw — wp)

Application: Structured illumination microscopy (SIM)



Magnetic resonance imaging

m Magnetic resonance: wg = vBy

Frequency encode:

r = (2,9,2)

m Linear forward model for MRI

§(wpm) = /R3 s(r)e I @m ) dp (sampling of Fourier transform)

m Extended forward model with coil sensitivity

§w(wm):/ w(r)s(r)e I @n ) dy
R3

Basic operator: Convolution

H: Ly(RY) — Ly(RY)
H{f} @) = (b f)(a) = [ bl =) )y
Impulse response:  h(x) = H{5}
Equivalent analysis functions: 7, (x) = h(x,, — -)
Frequency response:  h(w) = F{h}(w)  with h € Lo (R?)

m Convolution as a frequency-domain product

(hx @) < hw)fw)
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Basic operator: X-ray transform

Projection geometry: @« = t6 + 0= with @ = (cos 6, sin 0)

m Radon transform (line integrals)

Ro{s(z)}(¢) :/s(tawei)dr

R

sinogram

Equivalent analysis functions: 1y, () = 6 (tm — (, 0,,))

Modality Radiation Forward model Variations
2D or 3D tomography coherent x-ray Y = Re.x parallel,
‘ cone beam, spiral sampling
3D deconvolution —H brightfield, confocal,
: = Hx
microscopy fluorescence Yy light sheet
; = HW,z )
structured illumination fluorescence Yi v full 3'_3 reconstruction,
microscopy (SIM) H: PSF of microscope non-sinusoidal patterns
W, : illumination pattern
Positron Emission . =H list mode
amma rays = Hg,T
Tomography (PET) g y Yi with time-of-flight
Magnetic resonance ’ _ iform or non-uniform
NS radio frequency =Fx unifo
imaging (MRI) Yy sampling in k space
; = FtW;x
Cardiac MRI Yt,i +W; gated or not,

(parallel, non-uniform)

radio frequency

‘W,: coil sensitivity

retrospective registration

Optical diffraction
tomography

coherent light

yi = W;Fx

with holography
or grating interferometry
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1.2 DISCRETIZATION

= Discretization: Finite dimensional formalism

= Exemples
Diffraction-limited convolution (Fluorescence microscopy)
MRI

= Appendix A: Magnetic Resonance Imaging

Unser: Image processing 10-13

Discretization: Finite dimensional formalism

Selection of appropriate basis functions: 35 : R? — R with k€ Q C Z¢ and Card(Q) = K

s(r) = > s[k] i (r) m
keQ
| =

Signal vector: s = (s[k]), _, of dimension K

m Measurement model (image formation)
= [ (P)s(r)dr ] = () -l =1, M)
]Rd

Nm: sampling/imaging function (mth detector)

n[-]: additive noise

y=Hs+n

System matrix : H € RM*X  with  [H]mk = (i, Be) = / N (1) Bre () drr
Rd

10-14



Example of basis functions
Shift-invariant representation: [ (x) = f(x — k)
d
Separable generator: 3(z) = [ ] B(xn)
n=1

m Pixelated model ) .
08 tri(z) = 0 (x)
B(x) = rect(x) 06
0.4
0.2

m Bilinear model op] 2 1 0 1 2 3

B(x) = (rect * rect)(z) = tri(x)

m Bandlimited representation

B(x) = sinc(x)

10-15

Example 1: Diffraction-limited convolution
Hypothesis: F{hop }(w) = hop(w) = 0 for ||w|| > wy  (Diffraction-limited optical transfer function)
m Discretization

wo < 7 and representation in (separable) sinc basis {sinc(z — k)} -

Analysis functions: 7, (x,y) = hop(x — m1,y — ms)

H]m.k = (m,sinc(- — k))
= (hop(- — m), sinc(- — k))
= (sinc * hap ) (m — k) = hop(m — k).

H: convolution matrix diagonalized by discrete Fourier transform

m Matrix-free implementation using the FFT

The discretized forward model s — Hs is implemented efficiently using the FFT

10-16



Diffraction-limited 2D model of a fluorescence microscope

S($7y) g ¥ '" | g(ZL'7 y) = (h2D * 8)(‘1’.7y)
Thin specimen (u f""
Radial profile

- R

with r = /22 + 42, rg = 2?{;% J1(r): first-order Bessel function.

r/ro

m Airy disk:  fan(z,y) = Io ‘2"1“/’"0

m Modulation transfer function

2
. 2 | arccos (“:)’H) ”%” 1-— <HWLH) , for0 < |lw| < wo
h2D(w) — 0 0 0

0, otherwise

Cut-off frequency (Rayleigh): wo = 280 =

Example 2: Magnetic resonance imaging (MRI)

m Physical image formation model (noise-free)

3(wm) —/ s(x)e @) qg (sampling of Fourier transform)
R2

Equivalent analysis function: 7, (x) = e~i{wm.®)

m Discretization in separable sinc basis

H], ke = (M, sinc(- — k))

= (eI @m) sine(- — k)) = e Hwmk)

Property: HY H is circulant (FFT-based implementation)
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Example 3: Discretization of the Radon transform

Shift-invariant basis:  s(x) = Z s[njo(x —m) with QcC 72 Po(w) = Ro{p}H(w) = 4(wcosf,wsinf)
nen
w1
9)
. N
m Fourier-slice theorem: /Re{gp}(t)e_l“’tdt = ¢(w)| e 3 '\9
R

Proposition: Consider the separable function p(x) = 1 (z)p2(y). Then,

Ro{o(- — o) }(t) = wo(t — to)

where ty = (x, 8) and

<p9(t) = (\00159| 901(

=) ®.

) * |51110|902<Sin0

cosf

H]i,5)n = Ro, {o(- —n)}t —4) = o, (t; — (n,0:))
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Spline flowers

10-20



Appendix A: Magnetic Resonance Imaging (MRI)

Richard R. Ernst (ETHZ) Paul C. Lauterbur Peter Mansfield
Nobel Prize in Chemistry 1991 Nobel Prize in Medecine 2003
spectroscopy
Exploits Lamor precession of nuclear spins: w ="y X B

Y,

spin resonance

10-21

Physical principle of magnetic resonance
m Spins as signature of the atomic structure

= The nuclei of individual atoms are characterized by a spin and a magnetic moment:
they are equivalent to small magnets.

= When exposed to a large external magnetic field Bo, the nuclear spins tend to resonate and precess at the
Larmor frequency

wo = 7Bo
~: gyromagnetic constant associated with a given nuclear type (e.g. 'H ou '3C)

Induced voltage

—

Wi -
S e

Excitation

Example: By = 1.5 Tesla corresponds to fo = 52 ~ 64 MHz for Hydrogen nuclei

10-22



Magnetic Resonance Imaging (MRI)

Proton density

“whole body” scanner (1.5 Tesla magnet)

m Controlled RF excitation
= Signal induced by the spins of hydrogen nuclei (! H=proton) exclusively

m The relaxation decay during acquisition is negligeable
— Elementary MNR responses are quasi-sinusoidal

m One only considers a spin density p(x) along the x axis (1D imaging)

10-23

Frequency encoding wo = wo(x)
m Excitation via a bandlimited RF pulse: wo(z) € (Wmin, Wmax)
= A gradient along x is applied during the measurement: ‘ ’ ‘ - <
Bz:BZ(.r):BO—%.r I [ X
v vl l
m Measurements: the FID signal that is received back from the sample in the RF coil e

= The signal is demodulated with its central frequency being mapped to 0.

m Principe of frequency encoding

m Signal due to a point source of density pg at position zq:

5(t) = poe H(C=20)t  (pure sinusoid)

The position xq is encoded in the frequency w(zg) = —G.xo.

= Signal due to a continuum of sources with density distribution p(x)

e .
s(t) = / p(x)e ®(C=N g
m The spin density along x is recovered by inverse Fourier transform:

1

+oo
p(z) = g[m $() =y, € dw

10-24



Beyond one dimensional MRI

m Three-dimensional localization

m Localization in z.

A static magnetic field that is linear along z (gradient) is applied during the Do — @, Opax — D
excitation. In this way, the RF pulse only excites a slice perpendicular to z: wy
UJ(Z()) S (wminvwmax)-
m Localization in y by phase encoding.
A linear gradient in y is applied during a suitable time after the excitation but : 4’
before the acquisition. The process is iterated such as to sample the 2D Fourier - -0
transform along the w, axis. b >4
m Localization in = by frequency encoding. ' H @
Measurement of the 2D Fourier transform of a slice along w, with w, = Const. *
10-25

Part 2:

Classical image
reconstruction

Discretized forward model: y=Hs+ n

Inverse problem: How to efficiently recover s fromy ?

10-26



Vector calculus

m Scalar cost function J(v) : RY — R

8J/3v1
. - J(v) ) .
m Vector differentiation: = : =VJ(v) (gradient)

ov :
8J/8vN

m Necessary condition for an unconstrained optimum (minimum or maximum)

aJ(v)
ov

=0 (also sufficient if J(v) is convex in v)

m Useful identities

2 (@) = 2 (v"a) =a

ov v
3 (viAv) = (A+A") v
6% (viAv) =2A v if A is symmetric

Basic reconstruction: least-squares solution

System matrix: H € RM*N .

S Imaging /L y=Hs+n . 5
> system () - LS algorithm
, y=Hs

m Least-squares fitting criterion:  Jis(S,y) = ||y — Hs||?

min ||ly — ¥||> = min Jis(s,y) (maximum consistency with the data)
S S

m Formal least-squares solution

=|y-Hs|*=|y|*+s"H'Hs - 2y"H
Jus(s,y) = [ly —Hs||” = [ly|" +s" H Hs -2y Hs
A aT

ONsley) — 9HTHs—2H"y =0 =  Sig = arg min Jis(s, y) = (H'H) 'H"y

m Backprojection (poor man’s solution): s~ H”y

OKifHisunitary < H™!'=HT

10-27
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Data fit and maximum-likelihood estimation

m Using the knowledge of the noise distribution

Hypothesis: independent, zero-mean measurement noise with known PDF p(n)
Measurement equation < y—Hs=n

Expected measurement:  E{y} = Hs (detector-wise)

M
Conditional probability density:  p(y|s) = H (M)
m=1

m Maximume-likelihood estimation (ML)

Jur(s,y) =log (p(yls)) = Y _ log (p(nm)) = —Jaata(s, ¥)

m=1

Maximization of the ML criterion yields the most “likely” solution

m Special case: Gaussian white noise

M

i) =) = [T~ e (- 2 B8

m=1

o [ (m — H8],)* 1
= JuL(s,y) = — Z (W e 10g(27r02)> o —Jus(s,y) + Const

m=1

Making use of regularization

From a global perspective, ML deconvolution is ill-posed. It is better to constrain the
solution by imposing explicit regularization constraints:

J(57Y) = Jdata(svy) A A Jreg(s)

A > 0: regularization factor (adjustable)

m Many possible choices of regularization

= Quadratic or Tikhonov: Jyee(s) = || Ls||?
where L is a suitable differential operator (e.g., Laplacian) that penalizes oscillations

= Maximum a posteriori or MAP (using Bayes rule):
Jumap(s) o< —log(p(s))  (prior probability density)

= Total variation: Jrv(s) = ||Vs||; (favors piecewise-constant solutions)

= General non-linear: Jyex(s) = Zle ®([Ls],,) where ®(-) is a symmetric increasing function

Wavelet regularization: Jyeq(s) = [WTs|¢,
where W is a suitable wavelet transform (favors “sparse" solutions)

0

see Part Il
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Linear inverse problems (20th century theory)
m Dealing with ill-posed problems: Tikhonov regularization
R(s) = || Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto ||y — Hs||3 < o?
S

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin |y — Hs|3 + A||Ls||3
—_——— ——

data consistency  regularization
. Lo _ T Tr\—1ygT,, _
Formal linear solution: s=(H " H+AL'L)" " H'y =Ry -y

Interpretation: “filtered” backprojection

10-31

Iterative reconstruction algorithm

m Generic minimization problem: s, = argmin J(s,y)
S

m Steepest-descent solution

gk+1) — g(k) _ ’yVJ(s(k),y)

m lterative constrained least-squares reconstruction

Jrix(s,y) = 3lly — Hs|” + 3| Ls||”

0Jrik(s,y)

Gradient: s

=—so+ (H'H+ALTL)s with so=H"y

Steepest-descent algorithm m Conjugate gradient

sk+1) — g(k) 4 V(So — (HTH + )\LTL)g(k)) = More efficient, but requires lot of storage

0, [s*+tD]; <0

[s(’““)]- otherwise (projection on convex set)
(3] .

Positivity constraint (IC): [TV, = {

10-32



Iterative deconvolution: unregularized case

150 = 16.287 dB

Degraded image:
Gaussian blur + additive noise

Ground truth

10-33

Effect of regularization parameter

T ety - |
Degraded image: not enough: A=0.02 not enough: A=0.2
Gaussian blur + additive noise

2l
Optimal regularization: A=2 too much: A=20 too much: A=200
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Designing fast reconstruction algorithms

Normal matrix: A = H'H  (symmetric)

Formal linear solution: s = (A + \L'L) 'H'y =R, -y

Generic form of the iterator: ~ s(*F1) = s(*) 4 y(sg — (A + ALTL)s®)

m Recognizing structured matrices

= L: convolution matrix = L”L: symmetric convolution matrix

= L, A: convolution matrices = (A + ALTL) : symmetric convolution matrix

m Fast matrix-free implementation

= Diagonalization of convolution matrices = FFT-based implementation

= Applicable to: - deconvolution microscopy (Wiener filter)
- parallel rays computer tomography (FBP)
- MR, including non-uniform sampling of k-space

Statistical formulation (20th century)

m Linear measurement model: y = Hs +n

n : additive white Gaussian noise (i. i. d.)
s : realization of Gaussian process with zero-mean
and covariance matrix E{s - s”} = C,

m Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

smap = argming 55|y — Hs|3+  3[C;/%s|3

Data Log likelihood Gaussian prior likelihood

10-35

Norbert Wiener (1894-1964)

- longauss(u) = %Hqu + Const.

$ L= c. '/ Whitening filter u = Ls : standardized Gaussian innovation

m Quadratic regularization (Tikhonov)
STik = argmsin (|ly — Hs||3 + AR(s)) with R(s) = |Ls|3

Linear solution: s = (H'H+ ML'L)"'H’y =R, -y
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Appendix B: Convergence of iterative least squares

Basic Landweber/van Cittert iteration
s+l — ) 4 vHT(y _ Hs(t))
= (I-7HH)s® +yHy

= (s —s0) = (1-yHH) (s —s1)

Converges iff. A = (I — yH"H) is a contraction map; i.e., p(A) = jnax |Ae| <1

m Spectral analysis
A and HTH are symmetric matrices that share the same eigenvectors u,,

(H'H)ju, =\u, < Au,=(1-9\)u,
Y

m Condition for convergence

p(A) =max|y,| <1 = 0<~v< (since \,, > 0 for all n)

2
Amax {HTH}

10-37

Part 3:

Sparsity-based image
reconstruction

(2nd generation)




Linear inverse problems: Sparsity
(20th Century) p=2 — 1 (21st Century)

Srec = argmin (|ly — Hs||3 + AR(s))
m Non-quadratic regularization regularization

R(s) = |[Ls|[7, — |ILs||7, — [ Ls]|,,

m Total variation (Rudin-Osher, 1992)
R(s) = ||Ls||¢, with L: gradient

m Wavelet-domain regularization  (Figuereido et al., Daubechies et al. 2004)

v = W~ !s: wavelet expansion of s (typically, sparse)
R(s) = [Ivle

m Compressed sensing/sampling (Candes-Romberg-Tao; Donoho, 2006)

Sparsifying transforms

Biomedical images are well described by few basis coefficients

YR S Prior =
""" ——DCT
L owT e | sparse
o owram representation

R(s) = AW 's|lx

Normalised MSE
S

Advantages:

* convex

» favors sparse solutions
» Fast: WFISTA

s 70 f min=3, max=26 fl min=3, max=6 |-
3 1 I 1 i

. i i
0.1% 05% 1% 5%  10% 50% 100%
Percentage of coefficients kept

(Guerquin-Kern IEEE TMI 2011)
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Theory of CompreSSEd SenSing [Donoho et al., 2005; Candés-Tao, 2006, ...]

m Generalized sampling setting (after discretization)
= Linearinverse problem: y=Hs+n
= Sparse representation of signal: s = Wx with |x|o = Ko < K

s M x N system matrix: A =HW
+ “noise”

m Formulation of ill-posed recovery problem when 2K, < M < K

(PO) min ||y — Ax|? subjectto |x[o < Ko
xeRK

m Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique and the recovery
problem (PO) is equivalent to:

(P1) min ||y — Ax||2 subjectto x| < Co
xeRK

10-41

Geometry of I vs. /1 minimization

m Prototypical inverse problem

min {ly — Hx|}?, + A[x[2,}  min|lx], subjectto [ly — Hx|?, < o?

m}in{”y —Hx|, + Axlle,} & m)in [x/|s, subjectto |y —Hx|, < o?

y1 =h{x

To C

/{{fjjj:”'— \\\\\ \ A
(s ‘///)/} ,”H T

lo-ball: ‘.’I,‘l|2 + |],‘2|2 =Cy

fl—ball: ‘I1| + ‘Ig| = Cl
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Geometry of > vs. /1 minimization

m Prototypical inverse problem

min {[ly — Hx|7, + A|x||7,} < minx]le, subjectto [ly - Hx]|j, < o

min {[ly — Hx||7, + A|xlle, } < min x|l subjectto [ly - Hx]|, < o

y1 =hix

x 2/ C

sparse extreme points

K’g—ball: ‘$1|2 + ‘.’132|2 = CQ

fl-ball: |I1‘ -+ ‘Iz‘ = 01

Configuration for non-unique ¢; solution
10-43

Elements of convex analysis

Definitions
Extended real line: R = R U {+00}. A function f : R? — R is said to be:

(i) proper if there exists at least one x such that f(x¢) < +oo (by default).
(i) coercive if f(x) — +oo as ||x|| — +oo.
(iii) lower semi-continuous (l.s.c.) at a point xq if, for every y < f(xy), there exists an e > 0

such that y < f(x) for every x € B.(xg) = {x € R : ||x — x¢]|2 < €}

(iv) convex if, for all A € (0,1) and all x1, x5 € R? such that x; # xa,
f(/\x1 +(1- )\)xQ) < Af(x1) + (1= X)) f(x2).

(v) strictly convex if f(Ax; + (1 — A)x2) < Af(x1) 4+ (1 — \) f(x2). (31, f(x1))

(i) + (i) on R? = f(x) is bounded from below and it reaches its infimum = existence of a minimizer

(iv) = any local minimum is also global (ii) + (iii) + (v) = f(x) admits a unique minimizer over R¢
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Examples of convex functions

Set of admissible functions: T'o(R?) = {f : R? - R s.t. f proper, convex and l.s.c. on R}

m Univariate functions 20
= If f is differentiable: fisconvex < f'(x)= %(;) is non-decreasing 1
= If fis twice differentiable:  fisconvex < f"(z)= dz];(f) >0 w0

= Example: ,(z) = |z|? is continuous (and a fortiori |.s.c.) convex for p > 1.
It is strictly convex for p > 1. - - - : ;

m Sum of (weighted) convex functions
s Let fl, fg S Fo(Rd) Then, Oélfl -+ O(2f2 < F()(Rd) for any a,as € RT.
d

= Example: f,(x) = [x[5 = (i) € To(RY). |[x]|% is strictly convex for p > 1.

i=1
m Indicator functions

= Let C C R? be a closed convex subset of R%. Then, the barrier function

, 0, fxeC
ic(x) = is I.s.c. and convex.

400, otherwise

Proximity operator (Moreau 1962)
Set of admissible functions: I'o(R?) = {f : R? — R s.t. f proper, convex and l.s.c. on R}

Definition

The proximity operator of f € T'o(R?) is the (multivariate) function prox : R* — R defined by

prox ;(x) £ arg m]iRr(li Lx —z||* + f(=).
ze
NB: If f € T'o(R?), then the minimizer is guaranteed to exist and to be unique.

m Properties
= Both x + prox;(x) and x + x — prox;(x) are firmly non-expansive.

= The fixed point of x'*! = prox(x") is the minimizer of f(x)

m Projection on a convex set
= Let i be the barrier function associated with the closed convex subset C' C R¢. Then,

prox; . (X) = arg mingec ||x — z|l2 = Projs(x)

10-45
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Proximity operator of || - ||, -potential

Let ® : RN — R be a separable additive potential with ®(x Z én(2,) where ¢, € To(R).

n=1

Then, ® € T'x(RY) (i.e., convex |.s.c.) and

prox, (z1)
: (layer of pointwise nonlinearities)

proxg (x) = .
x = f(Z)
prox,, (zn)
where prox, (r) = arg melﬂg (3(z—2)* + ¢n(2)). )
m Special case: ®(x) = A[|x]|; with parameter A € R and ¢,,(z) = \|z|.
g(z,2) = 2(z — 2)* + \|2|
Optimum at 2 with 2 g(x, %) = (2 — x) + A sign(2) = Z = prox, ()
= z=2Zz4\sign(2) = f(3)
T—A T>A A z
= Z=prox, (z)= () = 0, T € [=\ ] (soft-threshold)
TH+A <A
Image reconstruction under sparsity constraints p=1
m Convex optimization problem with non-smooth regularization
(1) Ssparse = arg min (%Hy — Hs|3 + g(s)) with  g(s) = \||Ls|l¢, (regularization)

m Solution by forward-backward splitting  (Combettes-Wajs, 2005)

. 2
Repeat Guarantee of convergence: v < S (HTH)

s 4 4 <HTy - HTHs(”_1)> Linear step (consistency with imaging physics)

\ ) s = = prox, ( () ) Proximal step (regularization = prior constraints)

until stop criterion

Proximal operator:  prox, (z) = argmin (3]|z — s[5 + g(s))
S

Interpretation: Sameas (1)withH=1 = “denoising” of current estimate z

10-47
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Efficient proximal denoising: wavelet-domain soft thresholding

m Regularization: Promote sparsity in an orthogonal wavelet basis

g(s) = \|WTsl|l,, with WTW =1 (Orthonormality)

Proximal step:  z = prox, (z) = argmin (4 |z — s||5 + AW 's|,, )
S

VA VA
Fast Wavelet Inverse Wavelet
Transform by Transform

m lterative Soft-Thresholding Algorithm (ISTA)  (Figueiredo-Nowak 2003)

Repeat L > Amax(H"H): Lipschitz constant of data term

f 7z =sn=b 4 % <HTy - HTHS(”*D)

& s(™ = Wavelet Threshold (z(”); A/L)

until stop criterion

10-49

Deconvolution of fluorescence micrographs
m Physical model of a diffraction-limited microscope

9(z,y,2) = (hap * 5) (2,9, 2) ?- ? ?.

777777777777777777777

3-D point spread function (PSF) 5

han (@9, 2) = Io |pr (&, &, =) 1

2 2
pa(x,y,2) = /]1&2 P(wy,ws) exp (j?ﬂzw;;}?2) exp (—j271-w1)\7_;fw2> dwydws
Optical parameters
= \: wavelength (emission)
= M: magnification factor
= fo: focal length
= P(wi,w2) = Ljju|<r,: Pupil function
s NA = nsinf = R/ fo: numerical aperture
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3D deconvolution of widefield stack

Maximum intensity projections of 384 x448x260 image stacks;

Leica DM 5500 widefield epifluorescence microscope with a 63x oil-immersion objective;
C. Elegans embryo labeled with Hoechst, Alexa488, Alexa568;

wavelet regularization (Haar), 3 decomposition levels for X-Y, 2 decomposition levels for Z.

(Vonesch-U., IEEE TIP 2009) o

Extended penalized least-squares formulation

N
(1) s\ = arg min (%IIy —Hs[5+2) q)([LS}n))

n=1
- System matrix: H € RM*X - Regularization operator: L € R¥*X  (not necessarily invertible)

- (Weakly-)convex potential @ : R — R (e.g., D(z) = |z|P)

m Bayesian interpretation: MAP estimator
= i.i.d. Gaussian measurement noise: n=y —s ~ N (0,0%I) = W exp (— 52z |n|?)

= Statistical signal model (prior): p(s) = exp (f% zﬁf:l <I>([Ls]n> (Gibbs distribution)

= Maximum a posteriori (MAP) estimator is given by (1) with A = o2.

m Variants of ISTA
= Inclusion of an inner loop for the iterative evaluation of prox; (x).

= Acceleration via the use of momentum: FISTA = Fast ISTA  (Beck-Teboule 2009)

= Alternating direction method of multipliers (ADMM) involving an auxiliary variable u = Lx (Ramani-Fessler 2010)
— alternation between some gradient-like updates and a separable proxg on u

= Incorporation of positivity constraints (barrier functional); splitting, primal-dual formulation  (Condat-Vu 2013)
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2D deconvolution experiment

Astrocytes cells

Bovine pulmonary artery cells Human embryonic stem cells

Disk-shaped PSF (7 x 7), L: gradient (TV-like), optimized parameters

Deconvolution results (SNR in dB)

Tikhonov 11 prior (TV) relaxed Io prior
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.9 19.04 18.34
Stem cells 15.81 20.19 20.5
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MRI phantom: Spiral sampling in k-space

L : gradient
Optimized parameters

Original Phantom

¢, prior (Tikhonov)
(Guerquin-Kern TMI 2012)

SER =17.69 dB

£ prior (TV) Relaxed £, prior

SER =21.37 dB SER =27.22 dB 10-54



ISMRM reconstruction challenge

L5 regularization (Laplacian) {1 wavelet regularization

(Guerquin-Kern IEEE TMI 2011) 10-55

Differential phase-contrast tomography @
4 mg )
| o
g > g z
5 | N —3
|

phase grating absorption grating

(Pfeiffer, Nature 2006)

4 ™
Mathematical model
p y=Hs
y(t,0) = S Rofs}(t) =
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Reducing the numbers of views

&

' Center for Biomedical Imaging

Rat brain reconstruction with 181 projections

SSIM = .49

ADMM-PCG

SSIM = .96

SSIM = .95

SSIM = .89

g-FBP

SSIM = .51

SSIM = .60

SSIM = .15

SSIM = 43

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI / ETHZ

(Nichian et al. Optics Express 2013)

Performance evaluation

Goldstandard: high-quality iterative reconstruction with 721 views

—e— ADMM-PCG

—=—FBP

361

181
Number of directions

91 46 23

(a)

[ |—e—ADMM-PCG

0.1 |—=—FBP

181 91 46 23
Number of directions

(b)

= Reduction of acquisition time by a factor 10 (or more) ?
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Compressed sensing: Applications in imaging

- Magnetic resonance imaging (MRI) (Lustig, Mag. Res. Im. 2007)
GE Healthcare PHILIPS SIEMENS
- Radio Interferometry (Wiaux, Notic. R. Astro. 2007)
- Teraherz Imaging (Chan, Appl. Phys. 2008)
- Digital holography (Brady, Opt. Express 2009; Marim 2010)
- Spectral-domain OCT (Liu, Opt. Express 2010)
- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014)
- Localization microscopy (Zhu, Nat. Meth. 2012)
- Ultrafast photography (Gao, Nature 2014)
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Part 4:

The (deep) learning revolution
= Rise of data-driven methods

First generation of deep CNN-based methods for image reconstruction

Iterative reconstruction using stable—and not so deep—CNNs
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Appearance of Deep ConvNets

(Jin et al. 2016; Adler-Oktem 2017; Chen et al. 2017; ... )

m CT reconstruction based on Deep ConvNets

= Input: Sparse view FBP reconstruction
= Training: Set of 500 high-quality full-view CT reconstructions (Jin etal., IEEE TIP 2017)

= Architecture: U-Net with skip connection

Skip connection

1 64 64 64 < # of channels 12864 64 1 1
U-net
> > - >®~>
spatial dimension :512x 512
647 128128 256128 128
256 x 256
126 256 256 512 256 256) > 3x3conv.+BN
Ty CTEiE

128x 128 ¥ 2x2max pooling

= skip connection

256" 512 512 1024 512 512 i
and concatenation

64xe4_ -1 | M| ] * 3x3up-conv2.

5124 1024 1024 +BN +RelU
32x 32\ - E— E— - 1x1conv.
10-61
CT data Dose reduction by 7: 143 views
FBP TV (CS)

Ground truth SNR 24.06 SNR 29.64

Reconstructed from
from 1000 views

W MAYO CLINIC



CT data Dose reduction by 7: 143 views

FBP TV (CS) FBPConvNet
Ground truth SNR 24.06 SNR 29.64 SNR 35.38

Reconstructed from

from 1000 views (Jin et al, IEEE Trans. Im Proc., 2017) 4 IEEE
C@ MAYO CLINIC 2019 Best Paper Award
CT data Dose reduction by 20: 50 views
FBP TV (CS) FBPConvNet
Ground truth SNR 13.43 SNR 24.89 SNR 28.53

Reconstructed from
from 1000 views

W MAYO CLINIC

(Jin et al., IEEE Trans. Im Proc., 2017)



Deep CNNs for bioimage reconstruction images

- X-ray tomography

- Magnetic resonance imaging (MRI)

- Dynamic MRI (cardial imaging)

- 2D microscopy

- 3D fluorescence microscocopy

- Super-resolution microscopy
- Diffraction tomography

- Ultrasound

(Jin--Unser, IEEE TIP 2017)
(Chen--Wang, Biomed Opt. Exp 2017)

(Hammernik---Pock, Mag Res Med 2018 )
(Tezcan--Konukoglu, IEEE TMI 2018 )

(Schlemper--Rueckert, IEEE TMI 2018)
(Hauptmann--Arridge, Mag Res Med 2019)

(Rivenson--Ozcan, Optica 2017)

(Weigert---Jug, Myers, Nature Meth. 2018)

(Nehme:-Shechtman, Optica 2018)

(Sun---Kamilov, Optics Express 2018)

(Yoon--Ye, IEEE TMI2019)
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But CNN-based methods also have their weaknesses

= They require lots of training data

Medical imaging: limited access to patient data
Lack of gold standards (except for compressed sensing scenarios)

Al Moore’s law: doubling every 3.4 month !

Training for (3D) medical imaging is extremely computer intensive

= They are hard to tune

Many design parameters: depth, width, number of channels

Use of ad hoc modules: batch normalization

= They lack robustness
Adversarial attacks

Unpredictable results

source: openAl

020 et

PNAS December 2

e oo
iti learning in imagd \
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Reference SPARSE-SENSE (TV)

(variant of FBPConvNet)

Figure 3: Reconstructions in a case of anaplastic astrocytoma, a rare
malignant brain tumor. SPARSE-SENSE and DL reconstructions are from
the same 4x-accelerated retrospectively undersampled acquisition. DL
achieves lower whole-volume MAE than SPARSE-SENSE, but fails to
properly reconstruct regions near the tumor.

G. Nataraj and R. Otazo. “Investigating robustness to unseen pathologies in model-free deep multicoil reconstruction.”
ISMRM 2020 Workshop on Data Sampling & Image Reconstruction

PnP-FBS variant of Iterative Image Reconstruction

Schematic structure of iterative reconstruction algorithm : % = argmin (% |y — Hx|*> + g(x))

Repeat
z(" = x4 o (HTy - HTHx(”*l)) Linear step (consistency with imaging physics)
Niter x(" = ProXe,q (z(")) Proximal or “denoising” step (regularization)
until stop criterion
Proximal operator: ~ prox, (z) = arg min (3lz — x|* + g(x))
Plug-and-Play variant (Venkatakrishnan-Bouman 2013)
Repeat
2" = x4 (HTy - HTHx(”_l)) Linear step (consistency with imaging physics)
Niter

x(™ = ((1 — B/)Id + ﬂf@) (z(")) Suitable nonlinear map (e.g., CNN)

until stop criterion

Requirement for convergence: || follLip <1 (Non-expansive operator) (Bauschke-Combettes 2017, Hertrich et al. 2021)
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Deep neural network with stability control

layers

= Layers: {=1,...,L
= Deep structure descriptor: (Ng, N1, -+, Nr)

= Neuron or node index: (n,¢), n=1,--- , N,

O
Activation function: 0 : R - R (RelLU) O
n=1,0) O

= Linear step: RVe-1 — RN
frix— f(x) =W+ Dby

neuron (TL, Z)

Zne =0 (WE z0-1 +bn)

= Nonlinear step: RN¢ — RNe nodes

o x— oy(x) = (0(z1),...,0(zN,)) _ Learned

- = i
/ ~ —

fdeep(a:):(O’LOfLOO’LflO"'Oo-?o\fQOUlofl)(a:)

m Controlling Lipschitz stability

L
£ deep (@) = Facep ()]
1 qeep ILip = SUPg g mroeer e =28 < [T loellLip [Wells..

(=1 ~1
N

1

Spectral normalization (Miyato ICLR 2018)

Neural nets with free-form activations and stability

layers
m Layers: ¢/ =1,...,L
= Deep structure descriptor: (No, N1,--- , Np)
O O

= Neuron or node index: (n,¢), n=1,---, Ny = o
= Activation function o, , : R =R (free-form) m-1,0 O
= Linear step: RVe-1 — RN reuen () (n, €)

f@ LT f[(il?) = Wgﬂ: + bg Zn,e = Ont(WE Ze-1 + )

nodes

= Nonlinear step: R™V¢ — RNe

Oy & +— O'g(:ll) = (07,,7[(.’131), - ;UNEJI(:L'NZ))

Jacep(®@) = (00 fro0op 10--0020 fy0010fy) ()
L /
. L Joint learning / training
Stability control: || fyeepllLip < [ loelluip [Wells. =1
=1 1“ 1

Lip-1 splines / \ spectral normalization vs. Parseval frame
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Learning activation functions / pointwise

Finding the “optimal” pointwise nonlinearity o : R — R

Infinite-dimensional optimization problem is that is inherently ill-posed

m Incorporating a regularization

= Should not penalize simple solutions (e.g., identity or linear scaling)
= Should impose diffentiability (for DNN to be trainable via backpropagation)

= Should favor simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

= minimizing/constraining TV?(¢) £ |D20|| s (Second-order total-variation)
m Controlling stability:  Lip(c) = sup,.p |Do(z)| < 1

m Searchspace: BVP(R)={f:R = R:|D*f|lm <0} < Lip(R)

10-71
TV(® regularization with slope constraints
Generic loss functional £ : R x R — R™ (strictly convex) Slope parameters: smin < Smax
M
(TV2-SC) S =arg min Z E(f(xm), ym) + )\TV(Z)(f) ,
FEBVEI(R) \ =
St Smin < f/(%) < Smax, VZ ER
Theorem (new improved: for Stéphane Mallat’s birthday) ) W™ Solution with fewest knots |

The solution set of (TV2-SC) is a non-empty, weak*-compact subset of af ﬁ&”ﬁi{"“

BV® (R), and all its extreme points are adaptive piecewise-linear 2f ]

splines with a most (M — 2) knots. 1
of 4
0 0‘2 0‘4 0‘6 0.‘8

The sparsest spline solution is identifiable using a variant of Debarre’s algorithm.

1
(Debarre JCAM 2022)
m Special cases of (Smin, Smax) (5w, Sm) = R (unconstrained)
= (—1,1): Lipschitz-1 splines (Aziznejad, IEEE OJSP 2022)
= (0,1): firmly non-expansive = prox of a convex potential

(
= (0, +00): monotone splines = derivative of a convex potential
(

s (—p,+00) with 0 < p (small): weakly-monotone splines = derivative of a p-weakly-convex potential
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Comparison of linear interpolators

i Df(z)]?dz st ') = 1 =1,....M
argfelgllt(lR)/R| f(z)|*dx f@m) = Ym, m s

(de Boor 1966)

M-norm = weak extension of L; norm:

: 2
fllam = sup I arg min ||D*fllm st f(@m) =Ym, m=1,.... M
o »ES(R): ”‘PllLocSl( ) FEBVA(R)

(U. JMLR 2019; Lemma 2)
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Representer theorem for stable, free-form deep neural

Theorem (Optimality of Lipschitz-1 deep spline networks) (Unser et al., ACHA 2025)
= neural network f : RN — RNz with deep structure (No, Ny, ..., N1)
T+ faeep(®) = (0L 0 fr 00 1020 fy0010f)(x)
= linear transformations f, : RVe-1 — RN 2 s Wy with W, € RNexNe—

u free-form activations oy = (01¢,...,0n,¢) : RV = RN with 0y 4,...,0n,0 € BV (R)

Given a series data points (&, y,,) m = 1,..., M, we then define the training problem

M L N
arg min E(Yps fgeep(T +A TV® Ont
(W), (00t €EBVE) (R)) (T; ( d; p( m)) Z}; ( v, )

s.t. Lip(gn,,f)a”W[”Sx < 17 (nzla"~7NZa 6:17 7L) (1) = Llp(fdeep) S 1
where E : RNt x RNt — R is an arbitrary convex loss function.

The solution of (1) exists and is achieved by a deep spline network with activations of the form

Kne
One(T) = bin,e + bop et + Z agne ReLU(Z — T ),
k=1
with adaptive parameters K, < M — 2,71 0, -, TK, ;ne € R, and b1 002,00, Q1m0 - -5 K, gm0 € R

Precursor without stability: (Unser, JMLR 2019)
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Outcome of representer theorem: deep splines

Each neuron (fixed index (n, Z)) is a piecewise-linear spline, characterized by
e its number 0 < K, , of knots (ideally, much smaller than M);
e the location {7, = Tk’n’g}i{:f of these knots (ReLU biases);

e the expansion coefficients by, ¢ = (b1 ¢, b2 50) € R?,

Qn ¢ = (al,n,fv ceey aK,n,l) S RK

These parameters (including the number of knots) are data-dependent and adjusted
automatically during training.

m Link with /; minimization techniques

Ky, K
TV (000) = D lakmel = l[anel and  Lip(o,0) = sup | arne
k=1 Ke{l,...Kn e} |2
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Implementation: Lip-1 spline CNN (trained for

facep(®) =(0p0fro0r 10---0020fy0010f)(x)

/ f

Learnable linear spline .
Convolutional layer

nonlinearities (pointwise)

m Linear B-spline basis

s Compact support
= Efficient forward & backward pass

= Easy to compute Lipschitz constant

(max. absolute derivative)
Knot spacing: 7', Number of knots: K’

(Bohra et al. IEEE Open JSP 2020)

m Constrain Lipschitz constant of each layer to be no greater than one

= Convolutional layer: Lip-1 projector (spectral normalization vs. Parseval frame)

Linear spline layer: Lip-1 spline projector
- piine fayer: Lip-1 spiine pro] (Ducotterd et al. JMLR 2024)
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PnP image reconstruction: Experimental set-up

m Training of Gaussian denoiser

= 240K examples of 40 x 40 patches from BSD500 dataset

= Additive Gaussian noise with o = 5/255 Deep-spline denoising Dn-CNN

= 3 x 3 convolution kernels, 32 channels
= Deep spline activations with 7' = 0.1, K = 51
= Number of layers =3, 5,7, 9

——

ol

m Compressed sensing MRI

Convolution + Nonlinearity
Convolution + Nonlinearity
Convolution + Nonlinearity
Convolution
|

m 256 x 256 ground-truth images
= Subsampling ratio = 0.3 Learned Lip-1 filters = Parseval CNN
= Gaussian additive noise with o = 10/255

= Number of layers of denoising CNN =5
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Results: Gaussian denoising with Parseval CNN

—8— RELU-U —@— RELU-L —@— Parseval DS-L
. ././.._——4 -//—i—l
=l —®| < 0.950;
o 0n
o 0
n
o 361
\ 4 L
- o o ° 0.925. P A —

2 4 6 8 2 4 6 8
Number of layers Number of layers

¥ Drop in performance for constrained ReLU nets
4 DS-L performs better than RelLU-L even with fewer parameters
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Compressed Sensing MRI

Subsampling mask Random Radial Cartesian

Image type Brain Bust Brain Bust DBrain Bust
Zero-filling 23.72 2588 22.99 2392 21.34 23.03
ReLU-L 30.70  30.59 29.60 30.09 23.70 26.87
Parseval DS-L 33.19 33.88 31.68 33.15 2497 28.68

Random sampling pattern

Ground truth Zero-filled reconstruction RelLU-L Parseval DS-L 10-79

WCRR variant: Learnable Weakly-Convex Ridge

Ichan
. 1
min, (2 ly — Hx|[[3 + > (1, ‘I%-(WiX)>> Weakly-convex extension of FOE (Chen-Pock 2014)
x i=1
= System matrix: H € RM*N X
= Learnable filters (CNN) : W; € RVXN 4 =1, ... Ihan &

= Shared free-form potentials : ®;(u) = (®;(u1),..., ®;(un)) with ®;(u) = [ ¢;(x)dz

~

m lterative reconstruction

Recurrent neural network (steepest descent)
Ichan

<) — () _ (Z W;I'(pi(wix(n)) +HT (Hx(n) _ y)) with ¢, = @;
i=1

(Goujon, SIAM J. Im. Sci 2025)
m Training on denoising problem
= Parametrization of the slope: ¢; = @, : R - R
s.t. weak-monotonicity constraint and penalty on TV(Q)(g/),I;) (sparsity) = linear splines
= Deep equilibrium training of variational denoiser where the ¢, are expanded in a B-spline basis.
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Table 4.1
PSNR and SSIM values for both reconstruction experiments.

Metric PSNR SSIM Metric PSNR SSIM Param.
Zero-fill 27.92  0.711 TV 31.57 0.852 1
TV[5] 32.03  0.7922 ACR [37] 31.58 0.848 6-10°
CRR-NN [19] 33.14  0.842 CRR-NN 32.87 0.862 5-103
WCRR-NN 34.55  0.858 AR [34] 33.62 0.875 2-107
Prox-DRUNet [23] 35.09  0.864 WCRR-NN 34.06 0.895 2-10%

Prox-DRUNet  34.20 0.901 2-107

(a) MRI (b) CT

Ground-truth

Zero-fill v CRR WCRR Prox-DRUNet
(25.05dB, 0.642) (29.86dB, 0.802) (31.68dB, 0.861) (34.43dB, 0.899) (34.52dB, 0.889)
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but, PSNR (or SSIM) is not the whole story

Theoretical guarantees : convergence, consistency, stability

convex weakly convex “state-of-the-#
convex learned CNN

handcrafted learned
Phantom TV - (31.66dB, 0.853) CRR - (33.21dB, 0.868) WCRR - (34.50dB, 0.899) Prox_DRUNet - (34.65dB, 0.904)

Figure 4.2. Reconstructions for the sparse-view CT experiment. The reported metrics are PSNR and SSIM.
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Learned filters and nonlinearities

80 channels

Potential function

0100 0075 0050 o025 0.000 0.025 0.050 0,075 0100
Activation function

Un panorama d’ondelettes et une “spline” bien dimensionnée
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Conclusion: Current status of computational imaging

m Classical reconstruction algorithms

Are typically linear and have a fast implementation (e.g. filtered backprojection)

= Can be derived from the minimization of a quadratic cost functional

Use regularization to deal with ill-posedness and to avoid amplification of noise

= Are well understood and come with theoretical guarantees (stability, etc.)

m 2nd generation methods / compressed sensing

= Derived from the minimization of a convex (sparsity-promoting) cost functional
= lterative reconstruction (Gradient-based or proximal)

= Can handle more extreme scenarios (lower dose, less measurements)

m Work in progress: The learning revolution
= Amazing reconstruction results / state-of-the-art in current challenges

= Still poorly understood, requires lots of training Stability/trust vs. performance ?
= Lack of robustness, tendency to hallucinate
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Conclusion: Cont’d

m What benefits all approaches

= Deep understanding of the imaging physics = accurate forward model
= Proper discretization via the use of appropriate basis functions

= Fast, matrix-free implementation of forward model/normal matrix (whenever possible)

m How the newer CNN-based methods profit from the older ones

= CNN variant of “classical” PnP iterative reconstruction pipeline
= Enforcing stability (Lip-1) to guarantee convergence
= Producing reconstruction that are consistent with the measurements

= Search for shallower architecture for faster training and inference
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